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ABSTRACT: A generic procedure is presented for the determination of the moment 
capacity of a complex beam’s cross-section. The use of a general expression - possible 
due to the single-rule representation of the stress distribution using Fourier’s series - 
allows for a compact computer coding and easier input data. The series converges to the 
idealized values obtained using a bilinear material curve as the number of terms in the 
series increases.   
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1. INTRODUCTION  

Since a beam is primarily a flexural member, the most important design requirement is 
usually the provision of adequate moment capacity. This is actually the internal moment 
produced by the flexural stress during the bending of the beam. The degree of difficulty in 
determining the moment capacity increases as the beam becomes more complex; this can be 
due to geometric and material configurations of the beam’s cross-section. Such complexities 
make the determination of the moment capacity a task best handled by a computer program. 
In developing a generic computer program, it is better to use general mathematical 
expressions which can cover a wide range of possibilities with minimal end-user intervention. 
In the determination of the moment capacity of a beam, the use of general expressions 
requires that the stress distribution be expressed as a single-rule function – this is the focus of 
this paper. 

1.1 Cross-sectional Stress Development in a Beam 

The moment capacity of a beam depends on the stress it can develop at the most critical cross-
section. The distribution of the stress on the other hand, depends on the straining of the cross-
section; usually assumed to obey the stress-strain curve of the material. For steel, a bilinear 
curve is usually adopted whilst for concrete, a rigid plastic behaviour is assumed (the material 
is either fully stressed or not stressed at all). Figure 1 presents a series of stress profiles for a 
beam based on the assumption of a bilinear elastic-plastic material. Figure 1a is the stress 
profile during the elastic stage where none of the fibers has yielded. Once yielding occurs the 
beam is said to be in the elasto-plastic stage where it contains a mixture of yielded and 
unyielded portions. This stage is shown in Figure 1b. If the loading further increases, the 
stress will continue to develop in the unyielded portion of the beam until the cross-section 
becomes fully yielded, leading to a stage called the plastic stage, as shown in Figure 1c. This, 
however, is a rather simplified concept as this condition is impossible to achieve due to the 
singularity at the neutral axis. Finally, there is a possibility for some of the extreme fibers to 
develop extra stresses due to strain hardening, but this stage is normally and conservatively 
ignored in design.  
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Figure 1. Various stress stages 
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1.2 Calculation of Moment Capacity 

The moment capacity of a beam can be calculated from: 

∫=
A

ydAyM )(σ (1)

where )(yσ is the cross-sectional stress distribution or the shape of the stress profile of the 
beam, expressed in the y-direction. Although Equation (1) is general, it has not been widely 
used in its integral form. For the elastic stage, the integration can be readily solved to give the 
elastic moment capacity, Me as: 

c
I
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e

σ
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where yσ is the yield stress, I is the second moment of area of the beam, and c is the distance 
of the centroid of the beam to the top surface of the beam. The form of equation (2) is 
possible because the stress profile at the limit of the elastic stage can be expressed as a linear 
function as follows: 

c
y

y yσ
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In calculating the moment capacity for the plastic stage, termed the plastic moment 
capacity, Mp, the rectangular stress block method is usually adopted. In this method, the 
location of the plastic neutral axis or PNA is sought first by satisfying the cross-sectional 
equilibrium. Once this is done, the resultants of the compressive and tensile portions of the 
cross-section are calculated as the product of the material yield stress (or design strength) and 
the relevant area. The resultant force is assumed to act at the centroid of the stress block. The 
plastic moment capacity is then obtained as the summation of the first moment of these 
resultants about any reference point given as: 

∑
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where R and z refer to resultant and lever arm, respectively and n refers to the total number of 
elements in a cross-section. Since the elasto-plastic condition contains both yielded and 
unyielded portions, the elasto-plastic moment capacity, Mep can be obtained from the 
combination of Equations (2) and (4) as: 
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where np refers to the total number of yielded elements, Ie is the second moment of area of the 
elastic portion and ce is the distance of the centroid to the highest level of the elastic portion, 
as shown in Figure 1b.  

1.3 Premature Failures and the Limited Development of Stress 

The attainment of the plastic condition is the optimum case for the design of a beam as it 
provides the maximum moment capacity. However, this requires an excessive amount of 
straining or rotation of the cross-section and is possible only if premature failures are 
prevented. For a steel beam acting alone, the most likely type of premature failure is local 
buckling. For a composite beam, in addition to local buckling, there are two other possible 
failures, crushing of the concrete prior to the full yielding of the steel section and fracture of 
the shear connection due to insufficient ductility. For a reinforced concrete beam provided 
with tension materials i.e. fibers or steel plates, in addition to the above failures, another 
possibility is fracture failure of the rebar. These premature failures dictate the stress 
distribution within a cross-section. If premature failure occurs before the yielding of the 
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extreme fiber, the moment capacity of the beam must be calculated using Equation (2) by 
replacing yσ with the maximum stress. If premature failure is prevented from occurring at 
least up to the attainment of the full yielding of the cross-section, Equation (4) is used. If 
premature failure occurs during the elasto-plastic stage of the beam, Equation (5) must be 
used instead.  

2. THE NEED FOR A SINGLE-RULE FUNCTION AND THE USE OF A GENERAL 
EXPRESSION 

The need for separate treatments for calculating the moment capacity of a beam at various 
stress stages occurs - despite the availability of the general expression of Equation (1) -  
because the stress profile of the elasto-plastic and the plastic stages can no longer be 
expressed as a single-rule function. As shown in Figure 1a, while the elastic stress profile can 
be expressed as a single linear function, f2, other stress profiles consist of multi-rule functions. 
For elasto-plastic conditions, there are three possible conditions, as shown in Figure 1b, 
depending on the degree of symmetricality of the beam about the major axis. A low degree of 
symmetricality can be caused, for example, by a composite configuration. For the plastic 
stage, the stress distribution can be envisaged as having f2 very slightly inclined over the 
major axis which is actually closer to the actual condition than is assumed in the rectangular 
stress block method.  

The calculation of the moment capacity is obviously more difficult for the elasto-plastic 
condition. The difficulty increases as the cross-section of the beam becomes more complex, 
both geometrically and materially. Currently, the authors are developing a new type of 
composite beam known as Precast Cold-formed Composite Beam or PCFC beam which 
consists of a closed cold-formed steel section of arbitrary shape surrounded by concrete. The 
cross-section of the beam is shown in Figure 2 and details are given in Yassin and Nethercot 
(2006). For such sections the use of the general expression of Equation (1) becomes attractive 
as it can eliminate the need for: 

i) the determination of the centroid of the yielded element (as this is implicitly done 
by the integration) 

ii) separate treatments for various stress stages 
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Figure 2. Cross-section of PCFC beam 
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Also, the use of a general expression is important especially in producing a generic 
computer program. The use of a general expression not only allows for a more compact 
coding but also reduces the size of the input data required. However, the use of Equation (1) 
requires the stress profile to be expressed as a single-rule function, achieved herein by the use 
of Fourier’s series. To note, the function must also be able to represent all the possible 
profiles of the various stress stages.  

2.1 Representation of the Stress Profile using Fourier’s Series 

The multi-rule functions of the stress profile of a cross-section can be stated as: 
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where, D and dep are the height of the beam and the distance of the neutral axis from the 
bottom surface of the beam, respectively, as shown in Figure 1. de is either the compressive or 
the tensile depth of the unyielded portion measured from the neutral axis, given as: 
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(6)

where yε  is the yielding strain and lε is the limiting strain or the premature failure strain, 
defined as the maximum compressive strain of the considered section at the occurrence of the 
premature failure, given as: 
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where Dtotal  is the total height of the beam, for example, the height of the composite cross-
section and fε  is the premature failure strain, also shown in Figure 1. Based on Equation (7), 
if D=Dtotal, then fl εε =  which refers to either one of the following (or both): 

i) the premature failure is the failure of the considered section itself, or/and 
ii) the extreme fiber of the considered section coincides with the extreme fiber of the 

failed material 

It can also be deduced from Equation (7) that lε  can have a negative value. If this is the 
case, it means that the considered section is completely subjected to tensile stress. In 
considering the various shapes of the stress profile, the following limits must also be imposed: 

i) if  eep dd + > D, the summation must be taken as equal to D 
ii) if  eep dd − < 0, the residual must be taken as equal to zero 

The multi-rule functions, f1, f2 and f3 are given as: 
yf σ−=1 (8)
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The nth Fourier’s sine term coefficient can be determined as: 
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The sine half-range expansion of the Fourier’s series of the stress profile can thus be given as: 
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Equation (12) is the approximation of the stress profile which converges to the idealized 
shape as the number of terms increases. By inserting Equation (12) into Equation (1), the 
moment capacity of a beam can be calculated for various stress stages as: 
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The use of Equations (12) and (13) in representing the stress profile of various stress stages 
and to calculate the moment capacity of a beam is demonstrated in the following example. 

3. APPLICATIONS 

A program has been written using Matlab7 to implement the above procedure and has been 
used to perform the calculations for the following examples. 

3.1 Example 1 (Convergence of the Fourier’s Series) 

In this first example, it will be shown that, 1), for a given elasto-plastic stress distribution, the 
Fourier’s series representation of the stress distribution converges to the idealized shape as the 
number of terms increases, and 2) the series is able to represent automatically all possible 
stress distributions. To achieve purpose 1), an elasto-plastic stress distribution having the 
following properties is used: 
 

Yield stress, yσ                     = 275 N/mm2,  Yield strain, yε    = 1400 microstrain,  

Limiting strain, lε                 = 2200 microstrain,  Beam’s depth, D = 400 mm, 
Location of neutral axis, dep = D/2.   
 

 The above stress distribution is shown by the solid line in Figure 3.  

 
 

Figure 3. Convergence of the Fourier’s series 
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Based on Figure 3, it can be seen that, the stress distribution has been successfully 
represented as a single-rule function by using Fourier’s series. It can also be seen that the 
series converges to the idealized shape (solid line) as the number of terms increases.  

To achieve purpose ii), the limiting strain, lε  is varied; possibly caused by different types 
of premature failure and composite configuration as allowed by Equation (7). To allow for all 
possible states of stress, a higher location of neutral axis is chosen (dep = 320mm, except for 
Figure (4c)); eccentric location of neutral axis may be caused, for example, by composite 
configuration. To note, for a complex cross-section, determination of dep requires iteration but 
the process is not detailed herein. There are 100 terms in the series. Figure 4 exhibits the 
generality of the Fourier’s series since it is able to dictate automatically the appropriate state 
of the stress based on the input data.  

 

 
a) 200=lε(elastic) 

 

 
b) 800=lε(elastic-plastic) 

 

 
c) 200−=lε, dep = 420mm (elasto-plastic) 

 

 
d) 50000=lε, (plastic) 

 
Figure 4. Generality of Fourier’s series representation of the stress distribution 
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3.2 Example 2 (Calculation of the Cross-sectional Properties of a Beam using 
Integration Method) 

Yassin and Nethercot (2006) have proposed a generic procedure for determining the cross-
sectional properties of a complex composite beam. The novel feature of the procedure is the 
use of functions to describe the shape of the different elements in a cross-section; this permits 
determination of the cross-sectional properties through appropriate integrations. Firstly, the 
basic concept of the procedure is briefly demonstrated herein through the determination of the 
area of the beam shown in Figure 5. By understanding this, it is possible to see the 
synchronization of this paper with the proposed procedure. The area of the beam is 
determined first symbolically and then numerically. Once these are established, the plastic 
moment capacity of the beam is then calculated. 
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Figure 5. A complex beam’s cross-section 

 
Since the beam is symmetrical about the minor axis, only half the beam is considered. Let 

the outer shape of the beam be represented by functions S1 and S2. These functions are derived 
in the y-axis direction by taking the mid-bottom point of the beam as the origin. The area of 
the beam is now determined symbolically as: 
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Now determine the area numerically. Based on the dimensions shown, it can be derived that 
S1 = 100–0.375y and S2 = 0.1y + 5. The area is thus determined as: 
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The above procedure, although it might appear cumbersome for hand calculation and 
typical beam configurations, can be very efficient for computer aided calculation and for 
complex composite beam configurations. It allows for compact computer coding and easier 
input data even for complex shapes and the end user is required to provide appropriate 
functions to describe the complex shape, as detailed in Yassin and Nethercot (2006). By 
inserting Equation (14) into (13), the moment capacity of the beam shown in Figure 5 can be 
determined as: 
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The values of the plastic moment capacity of the beam, determined using Equation (15) 
for various numbers of terms and two different limiting strains are given in Table 1 and 
plotted in Figure 6. 
       

Table 1. Plastic moment capacities  
Plastic moment capacity (1x108 Nmm) 

 
Present formulation 

 
 

Number 
of terms 25000=lε 50000=lε 

 
Rectangular 
stress block 

10 1.4662 1.4604 
30 1.8525 1.8532 
50 1.9201 1.9227 

100 1.9743 1.9741 
150 1.9921 1.9921 
200 2.0011 2.0010 
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Figure 6. Convergence of the plastic moment capacities 

 

Based on Figure 6, it can be seen that the values of the plastic moment capacities 
converge to the idealized value of the rectangular stress block method. Although it may not be 
obvious from Figure 6, it can be observed from Table 1 that the convergence rate of the 
moment capacity calculated based on 50000=lε is slightly higher than that calculated using 

25000=lε . This is expected since function f2 of the former is flatter, which is closer to the 
idealized condition. The causes for the different values between the present formulation and 
the rectangular stress block method are identified as follows: 

i) the noise borne with the series approximation (can be reduced by increasing the 
number of terms) 
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ii) ripples in the vicinity of the discontinuity (at the intersection between original 
functions and at the upper and bottom surface of the beam), a phenomenon 
known as Gibbs phenomenon.  

While item i) will theoretically vanish as the number of terms approaches infinity, item 
ii) will always remain, although the magnitude reduces as the number of terms increases. The 
fact that the rectangular stress method always gives an upper bound result, as shown in Figure 
6, means that these items not major concerns.  

4. CONCLUSION 

This paper has presented a generic procedure for determining the moment capacity of a 
complex cross-section. The novel feature of the procedure is the single-rule representation of 
the stress distribution using Fourier’s series which allows the moment capacity of the beam to 
be determined by a general expression without the need for the separate treatment of the 
various stress stages.  
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