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ABSTRACT 

 

 

 

 

 Fuel cell systems are being developed for powering clean, efficient automobiles 

of the future. The proton exchange membrane fuel cell (PEMFC) systems being 

developed for such use require a fuel gas that is either pure hydrogen, or a gas mixture 

that contains significant concentration of hydrogen. Thus, the vehicles with gasoline as 

the on-board fuel use a fuel processor, also referred to as an autothermal reformer, to 

convert gasoline to a fuel gas and reformate, that contains hydrogen, carbon dioxide, 

water vapor, and nitrogen, with trace levels of other species, such as carbon monoxide 

and unconverted gasoline. With the help of Aspen HYSYS 2004.1 the steady state model 

has been develop to analyze the fuel processor and total system performance. In this case 

study, the PEM fuel cell system consists of the fuel processing and clean-up section, 

PEM fuel cell section and auxiliary units. While the fuel processing and clean-up section 

consists of Autothermal Reformer, High-temperature Shift, Medium-temperature Shift, 

Low-temperature Shift, and Preferential Oxidation. The purpose of this study is to 

identify the influence of various operating parameters such as A/F and S/F ratio on the 

system performance that is also related to its dynamic behaviours. From the steady state 

model optimization using Aspen HYSYS 2004.1, an optimised reaction composition, in 

terms of hydrogen production and carbon monoxide concentration, corresponds to A/F 

ratio of 18.5 and S/F ratio of 9.0. Under this condition, n-octane conversion of 100%, H2 

yield of 42% on wet basis and carbon monoxide concentration of 7.56ppm can be 

achieved. The fuel processor efficiency is about 80.41% under these optimised 

conditions.  
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ABSTRAK 

 

 

 

 

 Sistem sel bahan api sedang dibangunkan bagi tujuan memperolehi kuasa yang 

bersih dan sistem pengangkutan yang cekap untuk masa hadapan. Sistem elektrolit 

polimer sel bahan api (PEMFC) sedang dibangunkan bagi tujuan tersebut tetapi 

memerlukan hidrogen tulen atau campuran gas yang mengandungi kepekatan hidrogen 

pada kadar yang tertentu. Dengan demikian, kenderaan yang menggunakan gasolin 

sebagai bahan api yang diproses melalui autothermal reforming (ATR) telah 

dibangunkan. Autothermal reforming berfungsi untuk mengubah gasolin kepada gas 

bahan api dan bahan-bahan yang lain seperti hidrogen, karbon dioksida, wap air, dan 

gasolin yang tidak bartindak balas. Aspen HYSYS 2004.1 telah digunakan untuk 

membina model yang berkeadaan tetap, bagi menganalisa kecekapan pemproses bahan 

api dan keseluruhan sistem. Tujuan kajian ini adalah untuk mengenalpasti pengaruh bagi 

nilai-nilai berlainan operasi parameter terhadap pencapaian sistem yang juga berkait 

rapat dengan sifat-sifat dinamiknya. Di dalam kajian ini, sistem sel bahan api PEM 

terdiri daripada bahagian pemproses bahan api dan bahagian pembersihan, bahagian sel 

bahan api PEM dan unit-unit tambahan. Manakala, bahagian pemproses bahan api dan 

pembersihan pula terdiri daripada Autothermal Reformer, High-temperature Shift, 

Medium-temperature Shift, Low-temperature Shift dan Preferential Oxidation.. Daripada 

kajian yang telah dijalankan dengan menggunakan Aspen HYSYS 2004.1, nisbah A/F 

dan S/F adalah 18.5 dan 9.0 dimana penghasilan hidrogen dan kepekatan karbon 

monoksida adalah optimum. Di bawah keadaan ini, penukaran n-octane adalah 100%, 

penghasilan hidrogen sebanyak 42% dan kepekatan karbon monoksida adalah 7.56 ppm. 

Di samping itu, kecekapan pemproses bahan api adalah 80.41% dalam keadaan optimum 

ini.  
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 
 

 Fuel cells, which have seen remarkable progress in the last decade, are being 

developed for transportation, as well as for both stationary and portable power 

generation. A variety of fuel cells for different applications is under development, e.g. 

solid polymer fuel cells (SPFC), also known as proton exchange membrane fuel cells 

(PEMFCs) operating about 353K, alkaline fuel cells (AFC) operating about 373K, 

phosphoric acid fuel cells (PAFC) about for 473K, molten carbonate fuel cell (MCFC) 

operating around 923K, solid oxide fuel cells (SOFC) for high temperature operation, 

1073-1373K (Wang and Zhang, 2005).  

 
 

 The advances in fuel cells and their supporting technology have been spurred by 

the recognition that these electrochemical devices have the potential for both high 

efficiency and lower emissions. Automobile manufacturers have decided that, given the 

state of technology, the PEMFC has the best potential to replace the internal combustion 

engine for propulsion power. Their decision is based on many considerations, including 
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the ability to fit (size and weight) the power plant under the hood of the car, the ability to 

start up quickly, the ability to meet the changing power demands (dynamic response) 

typical in driving cycle, and cost  (Ahmed and Krumpelt, 2005).  

 
 

 The fuel for the fuel cell system will vary with different applications. In 

transportation, it may be methanol, gasoline, or diesel. In stationary systems, it is likely 

to be natural gas, but it could also be propane. In certain niche markets, the fuel could be 

ethanol, butane, or biomass-derived materials. All these fuels are hydrocarbons or 

oxygenate that need to be reformed (Ahmed and Krumpelt, 2005). Partial oxidation 

(POX), autothermal reforming (ATR) and steam reforming (SREF) are the primary 

methods used in reforming hydrocarbons to produce hydrogen for use in PEM fuel cells.  

 
 

 Partial oxidation and autothermal reforming processes do not require indirect 

heating in contrast to steam reforming. Moreover, they offer faster startup time and 

better transient response. However, the product quality is poor due to low hydrogen 

concentrations, 70-80% for steam reforming versus 40-50% for partial oxidation and 

autothermal reforming on a dry basis. Compared with partial oxidation and autothermal 

reforming, catalytic steam reforming offers higher hydrogen concentrations. The steam 

reforming reaction on the other hand is a highly endothermic reaction and requires 

heating (Ersoz et al., 2006).   

 
 

 Majority the automobile manufacturers and oil industry accounts hydrogen as the 

ideal long-term fuel cell systems, but it is not yet clear, what will be the best fuel for the 

introduction of fuel cell systems. The use of hydrogen results in high efficiencies and a 

simple system design. Liquid fuels like methanol or gasoline on the other hand show 

advantages in terms of high energy density, easy fuel handling and-in the case of 

gasoline- in an existing fuel infrastructure (Wang and Zhang, 2005).   
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 On board reforming of gasoline, which already presents a well-developed 

distribution network, is particularly interesting for a more efficient utilization of energy 

in vehicles, compared to internal combustion engines. Besides that, it also have the 

following advantages of higher heat value, large amounts of storage hydrogen and steady 

state supply as well as convenient transportation. Moreover, the method of producing 

hydrogen from gasoline through autothermal reforming combined of partial oxidation 

and steam reforming enjoys the merit of low energy requirement, due to the opposite 

contribution of the exothermic hydrocarbon oxidation and endothermic steam reforming 

(Wang and Zhang, 2005).      

 
 

 For the hydrogen production by gasoline reforming most researchers, prefer 

autothermal reforming concepts to steam reforming and partial oxidation because they 

enable  

 

• a high hydrogen yield because of the addition of water to the feed 

• minimization of NOx – and soot-production by the addition of water and the low 

reaction temperatures (800-1000 °C) 

• dynamic operation through in-situ provision of the required energy because of 

exothermal reactions.  

 

The operating parameters of autothermal reformers are the stoichiometric ratio (SR) 

which is defined as the amount of oxygen in the feed divided by the amount of oxygen 

necessary for complete combustion and the feed temperature. In order to achieve high 

system efficiencies, a suitable system configuration were developed with the help of the 

steady state simulations (Aspen HYSYS 2004.1). 

  
 

 With respect to the above mentioned requirements there is also the need to 

optimise the dynamic behavior of a fuel cell system based on gasoline reforming. The 

quicker the system is able to follow load changes the smaller, cheaper and less heavy is 

the necessary battery in the car. For that purpose, the components of a fuel cell system 
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with autothermal reformer have to be described by appropriate dynamic simulation 

model. These models have to be implemented in a simulation program which is able to 

solve differential equations with the help of a numeric solver (Sommer et al., 2004).         

  

 

 

 

1.2 Problem Statement 

 
 

The amount and concentration of hydrogen generated from a given amount of 

gasoline, and the quality of the raw reformat (i.e. CO, CO2, CH4 and other hydrocarbons, 

H2O, and N2 contents), are influenced by the reforming conditions. The amount of H2 

produced determines the efficiency of the fuel processor; the greater this amount, the 

higher is the fuel processor efficiencies. Thus, this study will be covering the following 

area: 

 

1. What are the optimum Air/Fuel (A/F) and Steam/Fuel (S/F) molar ratios 

to get the high hydrogen production with CO concentration less than 10 

ppm?   

 
 

2. What are the optimum A/F and S/F molar ratios to get the low inlet 

temperature of PEM fuel cell (70-80◦C) with CO concentration less 

than10 ppm?   
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1.3 Objectives and Scope of Study 

 
 

 The objective of this study is to find the optimum of A/F and S/F molar ratios of 

hydrogen production for fuel cell applications from gasoline via autothermal reforming. 

In order to achieve that objective, several scopes have been drawn: 

 

1) Development of base case simulation 

The base case simulation had been developed using the combined reforming of n-octane 

that involves a complex set of chemical reactions. From these parallel reactions, we got 

the stoichiometry of the n-octane ATR and calculate the input and output molar flow of 

the reformate.      

 

2) Validation of base case model 

At this stage, the output from the simulation will be  compared with the results that from 

the base case simulation.     

 

3) ATR optimization 

The variations of operating parameters such as A/F molar ratios and temperatures will be 

using to investigate the influence to the hydrogen production and autothermal reformer 

efficiencies.   

 

4) Heat integration 

The heat integration process is very important in order to obtain the most economical 

reformer because the utilities cost can be reduce.   

 

5) CO clean up 

Whereas high temperature fuel cells (MCFC and SOFC) are capable of converting 

methane, CO and alcohols, etc. in the anode chamber by internal reforming, the PAFC 

and PEM cells do not tolerate excessive amounts of CO. The PEMFC does not tolerate 
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more than in the order of 50 ppm CO; the lower the CO concentration, the higher the 

efficiency of the cell.    

 

 5.1) WGS 

 The water gas shift reaction is an inorganic chemical reaction in which water and 

 carbon monoxide react to form carbon dioxide and hydrogen (water splitting). 

 This reaction will reduce the amount of CO besides of producing hydrogen. 

  

 5.2) PROX 

 The preferential oxidation is a parallel reaction in which CO and oxygen react to 

 form carbon dioxide while hydrogen and oxygen react to form water.  

 

6) Plant wide optimization 

  

 6.1) WGS 

 The variations of S/F molar ratios will be using to investigate the influence of 

 these parameters to hydrogen production, temperature and CO concentration. 

 

 6.2) PROX 

 The variations of air that will be injecting to PROX will be using to investigate 

 the influence to the hydrogen production, temperature entering the fuel cell and 

 CO concentration.   

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Inorganic_chemical_reaction
http://en.wikipedia.org/wiki/Water
http://en.wikipedia.org/wiki/Carbon_monoxide
http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Water_splitting
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1.4 Thesis Organizations 

 
 

  The important of this study is to identify potential design issues and obtain 

preliminary estimate of the expected system efficiency. So, the simulation of a gasoline 

autothermal reforming had been constructed in order to identify the autothermal 

reforming operating conditions and their effect on the overall system performance or 

efficiency. Therefore, the objective of this study is to simulate and optimize a gasoline 

autothermal reformer for fuel cell applications using Aspen HYSYS 2004.1. The 

remainder of this paper is organized as follows, Chapter II describes the literature review 

of this study and the methodology of this research was described at Chapter III. Chapter 

IV and Chapter V discussed about steady state simulation of hydrogen production and 

results and discussion. Lastly, the conclusion and recommendations for future works are 

drawn in Chapter VI.     
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