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ABSTRACT 

 

 

 

 

Metallic hollow sphere structures (MHSS) are a new type of reinforced 

materials and can be classified as an advanced composite material. A modified 

metallic hollow sphere MHS geometry which introduced the perforation becomes the 

main model in this research. This structure is called a perforated hollow sphere 

structures (PHSS) which is opened to be infiltrated by the matrix to fully embed it 

and form a composite. PHSS composites offer a new field of mechanical properties 

compared to cellular structures studied by other researchers. Emphasis will be given 

to determine the influence of the modified perforation diameter of PHSS composite 

in terms of macroscopic mechanical properties (e.g. Young’s modulus and Poisson’s 

ratio). In addition, the mechanical properties of PHSS composites were also 

compared to hollow sphere (HS) composites (with and without filled matrix). A 

perforation introduced in the sphere shells obviously changes the mechanical 

properties of the PHSS composite, e.g. Young’s modulus and Poisson’s ratio. The 

result of the investigation revealed that these values decrease as the perforation 

diameter increases. PHSS composite models were simulated based on the unit cell 

approach by means of the Finite Element (FE) method. This method can reduce the 

costs of experimental tests and provides more information on possible mechanical 

properties of perforated hollow sphere structures (PHSS) composites. Nevertheless, 

experimental tests are still necessary and should be conducted in the future for 

validation purpose. 

 



vi 

ABSTRAK 

 

 

 

 

Struktur Sfera Logam Berongga adalah jenis baru bahan pengukuh dan boleh 

dikelaskan sebagai bahan komposit termaju. Geometri Sfera Logam Berongga yang 

telah diubahsuai iaitu mempunyai lubang menjadi model utama bagi kajian ini. 

Struktur ini dipanggil sfera berongga berlubang terbuka untuk dimasuki oleh matriks 

untuk menerapkan sepenuhnya dan membentuk bahan rencam. Komposit sfera 

berongga berlubang menawarkan satu sifat baru mekanikal berbanding struktur sel 

yang dikaji oleh penyelidik lain. Tumpuan kajian ini adalah untuk menentukan 

pengaruh diameter penembusan komposit sfera berongga berlubang yang telah 

diubahsuai dari segi ciri-ciri makroskopik mekanikal (contohnya modulus Young dan 

nisbah Poisson). Di samping itu, sifat-sifat mekanik komposit sfera berongga 

berlubang juga dibandingkan dengan komposit sfera berongga (dengan atau tanpa 

matriks isian). Penembusan yang diperkenalkan dalam cengkerang sfera merubah 

sifat-sifat mekanik komposit sfera berongga berlubang dengan ketara, contohnya 

Modulus Young dan nisbah Poisson berkurangan kerana kenaikan diameter 

penembusan. Model komposit sfera berongga berlubang disimulasikan berdasarkan 

pendekatan sel unit dengan menggunakan analisis kaedah unsur terhingga. Kaedah 

ini boleh mengurangkan kos ujian ujikaji dan memberikan maklumat lanjut 

mengenai sifat-sifat mekanikal yang mungkin bagi komposit sfera berongga 

berlubang. Walau bagaimanapun, ujikaji sebenar masih diperlukan dan perlu 

dijalankan pada masa hadapan bagi tujuan pengesahan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

The idea of artificial cellular and porous materials originated from nature which 

creates structural optimization with respect to weight and load-carrying capacities.  Bones, 

cork, wood, honeycombs and foams are natural materials to name a few, structured to have 

the wonderful properties according to their needs. Due to their unique cellular structure, for 

years people have been working on the development of artificial cellular materials in order to 

fulfill the potential materials demand in the near future. Starting in 1960s, the geometry of 

honeycombs was identically converted into aluminium structures as cores of lightweight 

sandwich panels in the aviation and space industries [1]. In 1970, the concept of porous and 

cellular metals first emerged [2-4]. The combination of specific mechanical and physical 

properties in the cellular materials makes the newfound composite varying from the ordinary 

dense metal. Cellular metals are being thoroughly investigated since they have a wide range 

of different possible arrangements and forms of cell structures. Open- and closed-type 

classical metal foams were illustrated in Figure 1.1 taken from literature [5-6]. 
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Figure 1.1: Cellular metals: a) M-Pore® (aluminium sponge); b) Alporas® (aluminium foam); 

c) Brass foam [5-6] . 

The usage of composite materials in various industries including marine, aerospace 

and chemical process plant shows that this alternative material is capable to replace 

traditional ferrous materials. Composite materials comprise of the reinforced phase bounded 

within a matrix or binder, e.g. Carbon Fiber Reinforced Plastic (CFRP) and Fibre glass. There 

are various reinforcing materials in terms of shape such as fibers, whiskers, cloth, braids, 

dispersed particles, and flakes [7-9]. For this research project, the characteristic of hollow 

spheres immersed in a polymer matrix was investigated. 

 

 

1.2 Problem Identification 

 

 

  Classical engineering materials utilized in many industrial fields reach their 

limitations in properties thus, new developments are required. The increasing demands can be 

satisfied in many fields with introducing advanced structured materials. For instance, 

syntactic foams are of a promising candidate in this context. The prediction and optimization 

of physical properties require the development of accurate and justified computational 

models from which constitutive equations and material properties can be derived. By means 

of an advanced commercial finite element analysis code, this research has comprehensively 

investigated the trend and behavior of hollow sphere structure composites based on 

perforated inclusions. 

 

 

 

 

 

c) b) a) 
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1.3 Objective 

 

 

The primary objective of this thesis is to develop adequate computational models 

based on different unit cell approaches. Optimized meshes should be determined based on 

mesh refinement analysis. The following physical parameters should be predicted for 

different geometrical properties and material sets; 

 

i. Average mechanical properties (i.e. elastic properties) and  

ii. Average heat transfer properties (i.e. heat conductivity). 

 

 

1.4 Scope of Study 

 

 

The scope of this research is as follows: 

i. Generate finite element models for the hollow sphere composites; 

ii. Run simulations for different parameters; 

iii. Evaluation and interpretation of the numerical results. 
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Figure 1.2: Gantt chart
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1.6 Summary 

 

This chapter introduces the past and current development on hollow sphere structures. 

Initiating with successfully transformed natural honeycombs geometry with aluminium core, 

the investigation on the advanced materials continues rapidly with the novel PHSS. The shell 

of the HSS with the perforated structure offers a variety of specific mechanical and physical 

properties to be explored. The scopes and objective of this research were also highlighted in 

this chapter. Last but not least, the Gantt chart for this thesis was also included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




