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ABSTRACT 

 

 

 

 

 Fuel cell is an electrochemical device that converts hydrogen and oxygen into 

electricity without combustion. In this research jet fuel is converted to hydrogen for 

fuel cell application via autothermal reforming process. The autothermal reforming 

process consist of three different processes which are total oxidation (TOX) and 

partial oxidation (POX) processes, steam reforming (SR) process, water-gas shift 

(WGS) process and preferential oxidation (PROX) process. Jet fuel, air or oxygen 

and water were fed first to the conversion reactor for the reforming process then to 

the equilibrium reactor for the water-gas shift process to occur. Finally, to the 

conversion reactor where the preferential oxidation process takes place. The base 

case simulation model of the hydrogen production plant was developed based on the 

understanding of the process. The steady-state simulation was developed using 

Aspen HYSYS 2004.1. Optimization of the plant was carried out phase by phase to 

get the optimum value of water and air should be fed into the ATR reactor at 100 

kgmole/h of jet fuel. The optimum ratios for air-to-fuel (A/F) and steam-to-fuel (S/F) 

are 35 and 18 respectively, to produce 39.4% of hydrogen and less than 10 ppm of 

CO with 80.4% of fuel processor efficiency. 
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ABSTRAK 

 

 

 

 

Sel bahan api adalah sejenis alat elektrokimia yang menukarkan gas hidrogen 

dan oksigen kepada tenaga elektrik tanpa pembakaran. Dalam penyelidikan ini, 

kerosen ditukarkan kepada hidrogen untuk aplikasi sel bahan api melalui proses 

autothermal reforming. Proses autothermal reforming  ini mengandungi tiga proses 

berlainan iaitu proses pengoksidaan penuh (TOX) dan pengoksidaan sebahagian 

(POX), proses steam reforming (SR) dan proses penukaran air-gas (WGS) dan proses 

preferential oxidation (PROX). Kerosen, udara atau oksigen dan oksigen  disuap 

masuk ke dalam reaktor penukaran untuk menjalankan proses reforming dan 

kemudiannya ke dalam reaktor keseimbangan untuk menjalankan proses penukaran 

air-gas. Setelah itu ia ke reaktor penukaran di mana proses preferential oxidation 

berlaku. Simulasi model pelan penghasilan hidrogen pada keadaan tetap dibina 

berdasarkan pemahaman terhadap keseluruhan proses. Model ini dibina mengunakan 

perisian simulasi komputer Aspen HYSYS 2004.1. Setelah itu model ini 

dioptimumkan untuk mendapatkan nilai suapan air dan udara yang optimum untuk 

dimasukkan ke dalam reaktor autothermal reforming pada suapan kerosen sebanyak 

100 kgmol/jam. Nilai optimum yang diperolehi bagi nisbah udara kepada bahan api 

dan wap air kepada bahan api adalah masing-masing 35 dan 18. Manakala sebanyak 

39.4% hidrogen dihasilkan dengan isipadu CO kurang dari 10 ppm. Kecekapan 

pemprosesan bahan api pula adalah sebanyak 80.4%. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.3 Background Information 

 

 

Hydrogen is a chemical that can be produced using any primary energy 

source. Its use as a fuel could lead to lower emissions of pollutants and greenhouse 

gases. Further, depending on which primary energy supply is used, hydrogen fuel 

could help reduce energy imports, especially for transportation. A major use of 

hydrogen would be in fuel cells (Lenz et al., 2005).  

 

 

One very promising technology that has received increasing attention because 

of its ability to increase overall energy efficiency is fuel cells. Simply put, a fuel cell 

is an electrochemical device that converts hydrogen and oxygen into electricity 

without combustion. Fuel cells have been around since the mid 19th century, and the 

space program has used them since the early 1960s. A fuel cell operates much like a 

battery, turning oxygen and hydrogen into electricity in the presence of an 

electrically conductive material called an electrolyte. But unlike a battery, it never 

loses its charge and will generate electricity as long as there is a source of hydrogen 

and oxygen (KCC Energy Website). 
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As said before fuel cell is a device that produces electricity through a 

chemical process, as opposed to combustion. Fuel cells have the potential to achieve 

significantly higher efficiencies (i.e. produce more power for a given energy input) 

than combustion engines and conventional power plants. They can be refuelled at 

anytime, and do not run down or need to be recharged, making them similar to 

combustion engines in their use. However, fuel cells utilize chemical processes that 

are inherently more efficient than combustion. For example, a typical combustion-

based fossil fuel power plant operates at about 35% efficiency, while a fuel cell 

electricity generator can operate at 40 to 60% efficiency. As such, fuel cells could 

potentially provide energy more cleanly and efficiently than combustion engines 

(Culture Change Website).  

 

 

One key advantage of using hydrogen as a fuel is that virtually any primary 

energy source can be used to generate it. A major motivation for the hydrogen 

economy is the potential to use environmentally benign, domestic, and/or sustainable 

energy sources. Hydrogen can be produced either by reforming hydrocarbon fuels or 

by splitting water. Hydrocarbon fuels include fossil fuels (crude oil, coal, and natural 

gas) and biomass such as alcohol (e.g. methanol produced from landfill methane or 

ethanol produced from corn) (KCC Energy Website).  

 

 

Typical reactants used in a fuel cell are hydrogen on the anode side and 

oxygen on the cathode side (a hydrogen cell). Typically in fuel cells, reactants flow 

in and reaction products flow out, and continuous long-term operation is feasible 

virtually as long as these flows are maintained. Fuel cells are often considered to be 

very attractive in modern applications for their high efficiency and ideally emission-

free use, in contrast to currently more common fuels such as methane or natural gas 

that generate carbon dioxide. The only by-product of a hydrogen fuel cell is water 

vapour (Wikipedia Encyclopaedia Website).  
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The use of hydrogen for fuel cell applications represents one of the most 

environmentally sound methods for the production of electrical energy and is 

expected to gain wide usage in the near future for both automotive and small-to-

medium scale stationary applications. Hydrogen productions have been carried out 

by several approaches, for example, steam reforming, electrochemical, 

photochemical, biological and thermochemical methods. Steam reforming is one of 

the least expensive hydrogen production methods at the present time. Roughly 97% 

of the worldwide hydrogen production is accomplished by steam reforming of 

natural gas and other fossil primary energy (Liguras et al., 2003).  

 

 

 There are many types of fuel cell. There are fuel cells of low and high 

temperature. There are aqueous FCs (such as alkaline or AFCs), direct methanol FCs 

(DMFCs), polymer electrolyte FCs (PEFCs), phosphoric acid FCs (PAFCs), molten 

carbonate FCs (MCFCs) solid oxide FCs (SOFCs) and proton exchange membrane 

fuel cells (PEMFC). For this research, the hydrogen produced will be fuelled for 

proton exchange membrane fuel cell (PEMFC) (Alcaide et al., 2006).  

 

 

 PEMFC are preferred for automotive applications, because their low 

operating temperature (around 80oC) allow rapid startup; other potentially attractive 

features include relatively low projected cost and maintenance needs (Zalc et al., 

2002). PEMFC are the most common type of fuel cells for light-duty transportation 

use, because they can vary their output quickly (such as for startup) and fit well with 

smaller applications. Primary advantages of PEMFC are that they react quickly to 

changes in electrical demand, will not leak or corrode, and use inexpensive 

manufacturing materials (plastic membrane) (KCC Energy Website).  
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1.2  Problem Statement 

 

 

 This work is dedicated to study on the hydrogen production plant from jet 

fuel for fuel cell application. There are two problem statement drawn for this 

research which are: 

 

i. To identify potential design issues 

ii. To obtain a preliminary estimate of the expected system efficiency 

 

 

 Identification of potential design issues basically involve carry out the 

simulation and obtain the important optimum value of parameters such as 

temperature, pressure and amount of feed for the hydrogen production plant. These 

also include other operating conditions that will makes the plant runs at optimum 

level. After that, a preliminary estimate of the expected system efficiency was 

determined. This is crucial for future development of this plant on the question of 

whether the plant is eligible to be realized for real applications.  

 

 

 

 

1.3 Objectives and Scopes of Study 

 

 

The objective of this study is to develop an optimized simulation model for 

hydrogen production plant from jet fuel for fuel cell applications. In order to achieve 

the objective, several scopes have been drawn:  
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1.3.1 Development of base case simulation 

 

 

A steady state-state model of catalytic autothermal reforming process for a 

hydrogen production plant was developed by using Aspen HYSYS 2004.1. The 

autothermal process will consists of a few different processes which are total 

oxidation (TOX), partial oxidation (POX) process, steam reforming (SR) cracking, 

carbon dioxides reforming, carbon gasification and methanation. Conversion reactor 

was used for the autothermal reforming process  

 

 

1.3.2 Base case model validation 

 

 

The developed steady-state model results were compared with the 

mathematical stoichiometric calculation. This is to validate the theoretical reactions 

path with the actual simulation calculation inside the autothermal reactor. 

 

 

1.3.3 Autothermal Reactor (ATR) Optimization 

 

 

The objective of ATR optimization is to find out the best or optimum value of 

feed for air at 100 kgmole/h of kerosene or jet fuel. The optimum value would the 

one that give the best yield of hydrogen at a low yield of carbon monoxide. 

Temperature of the ATR reactor was also optimized. This was to find out at what 

temperature the ATR works best. 
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1.3.4 Heat Integration 

 

 

The objective of this process is to apply the heat exchanger network. The heat 

was integrated to utilise every energy produces. This can in the end save the energy 

where by it had been used effectively. 

 

 

1.3.5 Carbon Monoxide (CO) Clean Up 

 

 

 There are two subsystem that responsible to clean up the carbon monoxide 

produces in the ATR reactor before the effluents enters the Proton Exchange 

Membrane Fuel Cells (PEMFC). There are water gas shift (WGS) series of reactors 

and also preferential oxidation (PROX) reactor. 

 

 

 

 

1.3.5.1 Water Gas Shift (WGS) 

 

 

 Water gas shift (WGS) series of reactors consist of high-temperature water 

gas shift (HTS), medium-temperature water gas shift (MTS) and low-temperature 

water gas shift (LTS). These series of reactor will take turn one after another to 

gradually decrease the composition of CO produced inside the ATR reactor. In these 

reactors WGS reaction took place therefore reduced the composition of CO where it 

will be converted into carbon dioxide (CO2) and hydrogen (H2). 

Equilibrium type of reactors was used for the WGS processes. 
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1.3.5.2 Preferential Oxidation (PROX)  

 

 

 Preferential oxidation (PROX) reactor took place after the series of WGS 

reactors. In this reactor two PROX reactions that uses up the CO and hydrogen and 

converted them to carbon dioxide (CO2) and water. These subsequently reduced the 

composition of CO before the ATR effluent enters the PEMFC. The effluent must 

contains less than 10 ppm of CO. Conversion reactor was used for the PROX 

reaction. 

 

 

 

 

1.3.6 Plant Wide Optimization 

 

 

 In this scope it is aim to get the optimum value of water that should be fed 

into the ATR reactor and also the amount of air should be inject into the PROX 

reactor to assist the reduction of CO. In this case, it was divide into two section of 

where the optimization will takes place which are the WGS series of reactors and 

PROX reactor. 

 

 

 

 

1.3.6.1  Water Gas Shift (WGS) 

 

 

 It is important to get the optimum value of water that should be fed in the 

ATR reactor as it will effect the reactions that occur inside the WGS reactors. The 

optimum value of water will ensure that CO will be converted in to CO2 and H2 and 

subsequently reduced its composition in the effluent. 
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1.3.6.2 Preferential Oxidation (PROX)  

 

 

 This is the last section of the building process where by after this the 

simulation would be complete for this research. In this part the PROX reactor is 

optimized to find out the best value of air should be inject into the PROX reactor. 

The optimum value of air will ensure the reduction of CO in the reactor�s effluent 

before its enter the PEMFC.  

 

 

 

 

1.4 Thesis Organization 

 

 

This work is dedicated to construct a simulation of a jet fuel autothermal 

reformer for fuel cell applications and carried out to identify potential design issues 

and obtain a preliminary estimate of the expected system efficiency. The remainder 

of this paper is organized as follows; Chapter 2 gives out the literature review on the 

hydrogen production for fuel cell applications. In this section, researches done on the 

topic by other researchers were analyzed to gather information and knowledge.  

 

 

The process of developing the plant was explored in Chapter 3 while in 

Chapter 4 process flow on how to build the plant was described. Results obtained and 

a discussion based on the results was carried out in Chapter 5 and finally, the 

conclusion and recommendations for future works are drawn in Chapter 6. 
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