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ABSTRACT 

 
 
 
 

Autothermal reforming (ATR) is one of the leading methods for hydrogen production 

from hydrocarbons.  Liquefied petroleum gas, with propane as the main component, is a 

promising fuel for on-board hydrogen producing systems in fuel cell vehicles and for 

domestic fuel cell power generation devices.  In this research, autothermal reforming of 

propane process is studied and operation conditions were optimized using Aspen 

HYSYS 2004.1 for proton exchange membrane fuel cell application.  Furthermore, heat 

integration process also applied after the existed stream from the ATR reactor.  Besides 

that water gas shift (WGS) which included High Temperature Shift (HTS), Medium 

Temperature Shift (MTS) and Low Temperature Shift (LTS) reactor, preferential 

oxidation (PrOx) were used for the clean up system to reduce the concentration of 

carbon monoxide.  Then, optimization for the ATR, WGS and PrOx reactor were done 

to get the highest hydrogen produced with the lowest CO.  Temperature and 

component’s profile were also investigated for every unit’s operations.  Based on the 

final result, 100 kgmole/hr or propane with the ratio of air and water 1 : 7 : 4.3, produced 

41.62% of hydrogen with CO concentration lower than 10 ppm, and 83.14% fuel 

processor efficiency.  

 

 

 

 

 

 

 

 

 



 

 

 

ABSTRAK 

 
 
 
 

ATR merupakan salah satu kaedah yang terbaik untuk menghasilkan hidrogen daripada 

hidrokarbon.  Ceacir gas petroleum dimana propana dijadikan sebagai bahan utama 

menjanjikan bahan mentah utama untuk menghasilkan system hidrogen untuk kenderaan 

fuel cell dan untuk kegunaan kuasa jana fuel cell peralatan domestik.  Dalam kajian ini, 

reactor ATR mengunakan propana adalah dikaji dan operasi sistemnya dioptimumkan 

mengunakan Aspen HYSYS 2004.1 untuk fuel cell aplikasi.  Selain itu, integrasi haba 

juga diterapkan dan diaplikasi selepas aliran keluar daripada reaktor ATR.  Di samping 

itu, WGS dan PrOx proses dijalankan untuk proses pembersihan bagi merendahkan 

kepekatan CO.  Proses pengoptimum dilakukan untuk setiap reaktor bagi menghasilkan 

hidrogen yang paling tinggi dan pada masa yang sama kepekatan CO terendah.  Butiran 

yang lebih terperinci bagi suhu dan komposisi bahan turut dikaji pada setiap unit 

operasi.  Berdasarkan kepada keputusan akhir yang diperolehi daripada proses simulasi 

didapati bahawa sebanyak 100 kgmol/j propana dengan nisbah kepada air dan udara 

sebanyak 1 : 7 : 4.3 telah menghasilkan sebanyak 41.62% hidrogen dengan kepekatan 

CO dibawah 10 ppm,dan kecekapan sistem penjana adalah 83.14% 
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CHAPTER Ι 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.0 Background Research 

 
 

Hydrogen is the most abundant element in the universe.  Chemically bound 

hydrogen is present all over the earth; as part of the Earth’s water mass (including fossil 

substances) (Haussinger et al., 2003).  Hydrogen (H2) is a colourless, odourless, 

tasteless, flammable and non-toxic gas at atmospheric temperature and pressure.  The 

gas burns in air with a pale blue, almost invisible flame.  Hydrogen is the lightest of all 

gasses, approximately one fifteenth as heavy as air.  Hydrogen ignites easily and forms 

an explosive gas together with oxygen or air. 

 
 
Hydrogen is used in diverse industries such as a chemical, petrochemical and 

petroleum refining, metallurgy, glass and ceramics manufacture, electronic and food 

processing.  Hydrogen is used in large quantities as a raw material in the chemical 

synthesis of ammonia, methanol, hydrogen peroxide, polymers and solvents.  It is used 

in refineries for desulphurization and hydrotreating.  It is used in metallurgical industries 

to provide a reducing atmosphere and in the annealing of steel.  The electronic industry 

uses hydrogen in the manufacture of semiconductor devices.  In the food industry, 

hydrogen is used for hydrogenation of fats and oils.  Hydrogen also finds specialty 

application as a rocket fuel duel to its high combustion energy release per unit of 

weight.(Newson and Truong, 2001). 



 

 

Recently, there has been a tremendous interest in the development of hydrogen 

economy based on hydrogen as the energy carrier.  Excitement in this field stems from 

the fact that hydrogen is a potentially non-polluting, inexhaustible and efficient source of 

energy.  Hydrogen can be used in a fuel cell to produce electricity and heat or even be 

combusted with oxygen to produce energy and the only by product is water (Chris, 

2001). 

 
 

 A fuel cell by definition is an electrical cell, which unlike storage cells can be 

continuously fed with a fuel so that the electrical power output is sustained indefinitely 

(Reed, 1995).  They convert hydrogen or hydrogen-containing fuels, directly into 

electrical energy plus heat through the electrochemical reaction of hydrogen and oxygen 

into water.  The process is that of electrolysis in reverse. 

Overall reaction: 

 

 2 H2 (gas) + O2 (gas) → 2 H2O + energy    (1.1) 

 

 Because hydrogen and oxygen gases are electrochemically converted into water, 

fuel cells have many advantages over heat engines.  These include high efficiency, 

virtually silent operation and, if hydrogen is the fuel, there are no pollutant emissions.  If 

the hydrogen is produced from renewable energy sources, then the electrical power 

produced can be truly sustainable.  The two principle reactions in the burning of any 

hydrocarbon fuel are the formation of water and carbon dioxide (Espinal et al., 2005).  

As the hydrogen content in a fuel increases, the formation of water becomes more 

significant, resulting in proportionally lower emissions of carbon dioxide.  As fuel use 

has developed through time, the percentage of hydrogen content in the fuels has 

increased.  It seems a natural progression that the fuel of the future will be 100 % 

hydrogen. 

 
 



Fuel cells are classified according to the electrolyte use.  There are the alkaline 

fuel cell used in space vehicle power systems, the phosphoric acid fuel cell   (PAFC) 

used in both road transportation and stationary engines, the solid polymer fuel cell 

(SPFC) also used in both road transportation and stationary engines, the molten 

carbonate fuel cell (MCFC) used in stationary engines and the solid oxide fuel cell 

(SOFC) used only in stationary engines (Chen and Elnashaie, 2004) 

 
 

In general, fuel cells can be used for a wide variety of applications, the most 

important of which are as a power source for vehicles, as a stationary power source   (for 

example for large-scale power plants generation, power generation in the home or small 

power plants for larger industrial or residential sites) and as a power sources for portable 

devices (for example laptops, cameras, mobile phones, for replacement of batteries etc.).  

Natural gas and propane are attractive for stationary applications since they are low-cost 

fuels and the infrastructure for their transportation already exists (Wang et al., 2005).  

 
 
 
 
1.1 Problem Statement and Importance of Study 

 
 

This research aims to develop an optimized model of hydrogen production plant 

using propane for fuel cell application by autothermal reforming.  In order to analyze its 

performance, well-defined steady state model that will represent the real plant for 

hydrogen production is required.  In order to do that, Aspen HYSYS 2004.1 is utilized.  

The important to have this optimized model is to analyze design parameter for fuel 

processor, and also to get preliminary fuel processor efficiency. 

 
 
 
 
 
 
 
 
 



1.2 Objective and Scopes of Study 

 
 

Objective of this study is to develop an optimized model of hydrogen production 

plant using propane for fuel cell applications by autothermal reforming.  In order to 

achieve that objective, the following scopes have been drawn: 

 

i). Steady-state Model for Base Case 

• Steady-state model of hydrogen plant from propane was carried out by 

stoichiometry mathematical analysis calculation and the simulation using 

Aspen HYSYS 2004.1. 

 

  ii). Steady-state Model Validation for Base Case 

• Steady-state model developed within Aspen HYSYS 2004.1 process 

simulator was validated using data from stoichiometry mathematical 

analysis calculation  

 

ii). Process Heat Integration Model Development 

• Heat integration model was applied for this simulation using Aspen 

HYSYS 2004.1. 

 

iii). Clean Up Model Development 

• Clean up model was applied to reduce the concentration of carbon 

monoxide at the reformer. 

 

iv). Plant Wide Optimization  

• Every reactor had been optimized to achieve the highest hydrogen and the 

lowest carbon monoxide. 

 

v). Temperature and Components Profile Analysis  

• To get the overall overview of the process of the reformer. 

 



1.3 Thesis Organization 

 
 
 The realization of the objective of this thesis involves the culmination of a 

number of tasks.  The first task, introduced in chapter two is to do the literature survey 

about the synthesis of hydrogen for fuel cell applications.  In this chapter, an internal 

research of hydrogen production using propane by autothermal reforming was been 

concentrated.  This chapter is the most important chapter because we developed the 

method of hydrogen synthesis are based on the literature survey that we had done. 

 
 
 Chapter three is methodology for this thesis whereby the arrangements for the 

methods are based on the scopes.  Basically, there are five methods that we carried out.  

Then, chapter four is optimization simulation of hydrogen production plant from 

propane for fuel cell application.  In this chapter we developed the simulation using 

Aspen HYSYS 2004.1. 

 
 
 Chapter five is the results and discussion whereby the results are based on the 

methodology that is developed from chapter four.  Then, chapter six presents the 

conclusions and recommendations. 
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