
1
3D SPATIAL OBJECT DATA STRUCTURE

Harith Fadzilah Abd Khalid
Alias Abdul Rahman

Department of Geoinformatics,
Faculty of Geoinformation Science and Engineering,

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.

ABSTRACT

This paper describes the data structuring for 3D objects and
incorporate with spatial geo-database. Spatial geo-database is used to
manage large spatial data sets that able to provide access to multi
users. Today there are growing tendency towards the multifunctional
use of space i.e. above and below the ground surface. Current
applications such as urban planning, telecommunication and utility
providers need 3D spatial data. Thus, the need for managing the 3D
spatial datasets especially for large area is inevitable. A discussion on
how to establish these data structures for managing 3D spatial objects
of large areas form major discussion of this paper. 3D primitives like
points, lines, surfaces (or polygons) and solids are part of the
primitives. The mapping of this structure in Oracle Spatial DBMS will
be highlighted as well. Our presentation also will highlight the future
outlook of the data structuring approach for managing large volume of
3D spatial objects and relates with current research development in 3D
GIS.

Keywords: data structures, 3D spatial objects, geo-DBMS, 3D GIS

2 Advances towards 3D GIS

1.0 INTRODUCTION

The surrounding that we live in actually consists of abundance of 3D
spatial objects. Lately there is a demand in applications such as urban
planning (Cambry, 1993), telecommunications and cadastres (Stoter,
2000) which depend on 3D data. These applications made
complicated because of the tendency towards the multifunctional use
of space such as buildings above roads and railways and bridges
(Stoter, 2000). Presently the way we manage and administer these 3D
spatial objects is through Data Base Management Systems (DBMSs)
or specifically Geo-DBMS where these 3D spatial objects are treated
as 2D spatial objects. Although the present Geo-DBMS do not support
3D primitive, 3D spatial objects can be modelled with 2D primitive
polygons. With several 2D polygons bound a 3D object, it can be
stored in one record (multi-polygons) or multiple records (Stoter and
Zlatanova, 2003). This is achievable because Geo-DBMSs support 3D
coordinates.

This paper discusses part of 3D GIS where a practical approach to
model a 3D object using the available functions provided by the Geo-
DBMS. The first section described the reality that our surrounding
objects should be better administered in a realistic approach of data
management system. Then in the second section, we describe what
geo-database is. The third section illustrates the complex data type,
SDO_GEOMETRY for storing spatial object in Oracle Spatial. In
fourth section, we describe our experience with a simple 3D objects
structured as polyhedron implemented in Oracle Spatial based on an
approach done by Stoter et al. (2002) and Arens et al. (2005). Finally
we end with concluding remark and future work.

3D Spatial Object Data Structure 3

2.0 SPATIAL GEO-DBMS

Basically DBMS was designed for non-spatial data. Until the last
several years, developments of DBMS were significant to cater the
spatial data. According to Bruenig et al. (2004), there are two
approaches of development in DBMS linking to spatial data. The first
is the ‘top-down’ approach. In this approach, the DBMS functionality
has been constructed ‘under’ the GIS application and the GIS
application accesses ‘top-down’ to the geodata stored in the DBMS.
ESRI is one of the GIS vendors that initially implementing this
approach to store both non-spatial and spatial data.

The other development of DBMS is the ‘bottom-up’ approach. In this
approach, the DBMS supports the spatial data type; meaning that it
extends ‘low level’ DBMS data type and indexes to use them in the
upper level of GIS applications. Data analysis on the spatial and non-
spatial parts of objects can be executed. Lately more and more
commercial DBMSs provide spatial extensions to support spatial
objects.

Mainstream DBMS such as Oracle (Oracle, 2001), IBM DB2 (IBM,
2000), Informix (Informix, 2000) and Ingres (Ingres, 1994) have
implemented spatial data type and spatial functions or less similar to
the OpenGIS Consortium (OGC, 1998) Simple Features Specification
for SQL (OGC, 1999). According to the OpenGIS specifications, the
spatial object is represented by two structures, i.e. geometrical (i.e.
simple feature specifications) and topological (i.e. complex feature
specifications). The geometric structure provides direct access to the
coordinates of individual objects, while the topological structure
encapsulates information about their spatial relationships. Presently,
geometrical model has been implemented in mainstream DBMSs.

4 Advances towards 3D GIS

In other word, a full-fledged DBMS which has capabilities for
handling spatial data is also called Geo-database or Geo-DBMS
(Gunting, 1994). A Geo-DBMS knows primitive and composed
geometric data types i.e. point, line and polygon, in the same way as
its primitive standard data types such as character, string, integer, real
etc. Presently the implementations of spatial data type in mainstream
DBMSs are basically 2D and the spatial features are stored in a
geometrical model without the internal topology. Topological
relationships between geometries can be retrieved by the use of spatial
operators.

3.0 GEOMETRICAL MODEL IN ORACLE SPATIAL

Oracle, IBM DB2, Informix and PostGIS support geometric functions
defined by OGC (Oosterom et al., 2002). OGC specifications (OGC,
2001) are until now 2D and the implementations of spatial data types
in mainstream DBMSs stated above are actually in 2D, but some of
these DBMSs capable of supporting 3D coordinates in their spatial
data type. The standard SQL statement “select attribute_a from
table_b where a<100” is the same in every DBMS, however, if
geometries are concerned, different types of queries have to be
executed in different DBMSs. For example, Oracle Spatial does not
have explicitly implemented data types such as point, line and
polygon. There is only one complex data type, SDO_GEOMETRY,
composed of several parameters including type geometry, dimension,
and an array with the x, y, z coordinates.

In this investigation, we have tested the Oracle Spatial to store 3D
spatial object. Before we move to 3D object, let’s have a look on how
the Oracle Spatial provides the geometrical model of handling spatial
features. The basic building block for representing an object in Oracle

3D Spatial Object Data Structure 5

Spatial is an element. Points, lines and polygons are the primitive
elements which are stored by their x and y coordinates. To model a
spatial feature, a single element or a collection of homogeneous or
heterogeneous elements to is used to form a geometry object. Oracle
used a variety of geometric types (point, linestring, polygon,
multipoint, multi linestring, multipolygon). A geometry is stored as an
object in a single row, in a column of type SDO_GEOMETRY.
Oracle Spatial defines the object type SDO_GEOMETRY as:

CREATE TYPE sdo_geometry AS OBJECT (
 SDO_GTYPE NUMBER,
 SDO_SRID NUMBER,
 SDO_POINT SDO_POINT_TYPE,
 SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY,
 SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRY);

SDO_GTYPE indicates the type of the geometry (point, linestring,
polygon, multipoint, multilinestring, multipolygon). SDO_SRID is a
reference to the spatial reference system used for the ordinates.
SDO_ELEM_INFO is defined using a varying length array of
numbers. These attributes show how to interpret the ordinates stored in
the SDO_ORDINATES attribute. They include for every element the
offset where the element starts in the array, type of element (point,
linestring consisting of straight lines, linestring consisting of circular
arcs, polygon) and an interpretation code. One geometry object
composed of one or more elements.

Below is how a polygon is represented using the Oracle Spatial:

6 Advances towards 3D GIS

 10 (10, 40)

 (5, 20) (10, 20)

 SDO_GEOMETRY Column = (
 SDO_GTYPE = 2003
 SDO_SRID = NULL
 SDO_POINT = NULL
 SDO_ELEM_INFO = (1,1003,1)
 SDO_ORDINATES = (5,20, 10,20, 10,40, 5,40,
5,20))

In SDO_GTYPE =2003, the 2 indicates two-dimensional and the 3
indicates a polygon. In SDO_ELEM_INFO, the final 1 in 1, 1003, 1
indicates that this is a polygon containing straight lines. Also the first
position (‘1’) indicates that the first element (in this case only one
polygon) starts at offset 1 in the coordinate list.

To elaborate further, let see how a box is stored as a geometry in
Oracle (SDO_GEOMETRY type) in the ‘geom2d’ table and progress
further the same box with height 50 stored in the ‘geom3d’ through
SQL statements. These tables are representing the geometries of the
object.

/* creation of the tables */

3D Spatial Object Data Structure 7

create table geom2d (
 shape mdsys.sdo_geometry not null,
 ID number (11) not null);
create table geom3d (
 shape mdsys.sdo_geometry not null,
 ID number (11) not null);

/* inserting the data */
/* a 2D box */
insert into geom2d (shape, ID) values (
 mdsys.SDO_GEOMETRY (2003, NULL, NULL,
mdsys.SDO_ELEM_INFO_ARRAY(1, 1003, 1),
 mdsys.SDO_ORDINATE_ARRAY(0,0, 100,0, 100,100,
0,100, 0,0)), 8);

/* a 3D box */
insert into geom3d (shape, ID) values (
 mdsys.SDO_GEOMETRY (3003, NULL, NULL,
mdsys.SDO_ELEM_INFO_ARRAY(1, 1003, 1),
 mdsys.SDO_ORDINATE_ARRAY(0,0,50, 100,0,50,
100,100,50, 0,100,50, 0,0,50)), 9);

The metadata table for the geometries is maintained in Oracle which
describes the dimension, lower and upper bounds and tolerance in
each dimension. The following shows how the information on the
tables, geom2d and geom3d inserted in the metadata table. And finally
a spatial index (r-tree) is created on the tables (to speed up spatial
queries)

/* inserting metadata */
/* 2D table */

8 Advances towards 3D GIS

insert into user_sdo_geom_metadata values
 (‘GEOM2D’, ‘SHAPE’, mdsys.SDO_DIM_ARRAY (
 mdsys.SDO_DIM_ELEMENT (‘X’, 0, 500, 0.5),
 mdsys.SDO_DIM_ELEMENT (‘Y’, 0, 500, 0.5)),
NULL);

/* 3D table */
insert into user_sdo_geom_metadata values
 (‘GEOM3D’, ‘SHAPE’, mdsys.SDO_DIM_ARRAY (
 mdsys.SDO_DIM_ELEMENT (‘X’, 0, 500, 0.5),
 mdsys.SDO_DIM_ELEMENT (‘Y’, 0, 500, 0.5),
 mdsys.SDO_DIM_ELEMENT (‘Z’, 0, 300, 0.5)),
NULL);

/* creating index */
/* 2D table */
create index GEOM2D_I on GEOM2D(SHAPE)
 indextype is mdsys.spatial_index;
analyze table GEOM2D compute statistics;

 /* 3D table */
create index GEOM3D_I on GEOM3D(SHAPE)
 indextype is mdsys.spatial_index
parameters(‘sdo_indx_dims=3’);
analyze table GEOM3D compute statistics;

4.0 HOW 3D OBJECTS REPRESENTED IN ORACLE
SPATIAL

The example shown in Section 3 shows that 3D objects can be stored
in mainstream Spatial Spatial geo-DBMS even tough the geometry
types are 2D. There are two ways of storing 3D objects in Spatial geo-

3D Spatial Object Data Structure 9

DBMS: using the existing data types or creating user-define spatial
types. In this paper we will discuss on the first approach. In this
approach the 3D objects are represented as a set polygons (with 3D
coordinates) composing the object. This approach also has the
advantage of being ‘understandable’ for all the front-ends
(GIS/CAD/AEC) since it is supported by the DBMS. In Oracle
Spatial, 3D object can be represented as polyhedron (body with flat
faces) which is 3D polygon stored as a list of polygons or as
multipolygon (one polygon consisting of several polygons). Figure 1
is the UML class diagram that shows the data structure of polyhedron
data model.

Figure 1: Polyhedron Data Structure (Arens et.al. 2005)

10 Advances towards 3D GIS

To show the above data structure be implemented in Oracle Spatial,
lets take an example of a cube (Figure 2).

Figure 2: Cube to be stored in the Oracle Spatial (Stoter et. al. 2002)

In the first option i.e. defining a 3D object as a list of polygons, two
tables are used: a table ‘BODY’ and a table ‘FACE’ (Table 1). In the
table ‘BODY’ the 3D spatial object is defined by set of records
representing a polyhedron with references to the (flat) faces it consists
of. In the table ‘FACE’ the actual geometries of faces are stored as 3D
polygons (SDO_GTYPE: 3003, SDO_ELEM_INFO: (1, 1003, 1)).
This model is partly a topological model, since the body is defined by
references to the faces and the faces can be by neighbour-bodies. The
generated tables for the cube look as follows:

3D Spatial Object Data Structure 11

Table 1: The BODY and FACE table for a cube is stored as a set of
polygons (Stoter, et.al.2003)

In the second representation a body is stored as one record instead of a
set of records (Table 2). The multipolygon, which is also supported in
Oracle Spatial, is used for this representation. The resulting table
‘BODY’ in which the cube of the example is stored looks as follows:

12 Advances towards 3D GIS

Table 2: BODY table for a cube is stored as one multipolygons (Stoter, J.
et.al.2003)

As we can see, the advantage of 3D multipolygons is that it is
recognized as one object by front-end applications (GIS/CAD) that
can access, visualize, and edit these data and post the changes back to
the database. Another advantage of this option is the one-to-one
correspondence between a record and an object.

3D Spatial Object Data Structure 13

5.0 CONCLUSION

Currently, GIS is changing and becoming an integration of database
management, powerful editing and realism visualization cause by the
advanced computing development. At current status, 3D GIS mostly
focus on the geometrical rather that the topological aspect. The above
geometric approach of using set of polygons as polyhedron for the
data structure is encouraging us to model a large volume of 3D spatial
objects and managing them in a proper manner in a Spatial geo-
DBMS. This could be possibly done by the help of Light Detection
and Ranging (LIDAR) technology and photogrammetry method which
capable of capturing 3D data set in large area. Even though 3D spatial
object modelled by the method stated above and manageable in Spatial
geo-DBMS, it still lack of real true 3D data type (3D volumetric)
which can function in a proper 3D environment function such as
validation, volume, length, intersection, overlap, etc (Abdul-Rahman
et. al, 2002).

Our future works will be on how to use these data structure and
manage the 3D spatial objects in a Spatial geo-DBMS. This will
definitely relate to designing the Spatial geo-DBMS, spatial indexing
and also the visualization with front-end application software.

REFERENCE

Abdul-Rahman, A. , Zlatanova, S., Pilouk M., (2002). Trends in 3D
GIS Development. In Journal of Geospatial Engineering, Vol. 2,
No.2 pp. 1-10

14 Advances towards 3D GIS

Arens, C., J. Stoter, P.v. Oosterom (2005). Modelling 3D spatial
objects in a geo-DBMS using a 3D primitive. In Computer &
Geosciences 31 (2005) pp. 165-177.

Bruenig, M and Zlatanova, S. (2004). 3D-GeoDBMS, Directions
Magazine.

Cambray, B., (1993). Three-dimensional modeling in a geographical
database. In: Proceedings 11th International Conference on
Computer Assisted Cartography, MN, USA, pp. 338-347.

Güting, R.H, (1994). An Introduction to Spatial Database Systems.
VLDB Journal Vol. 3 no. 4, pp357-399

IBM (2000). IBM DB2 Spatial Extender User’s Guide and Reference.
Special web relese edition.

Informix (2000). Informix Spatial DataBlade Module User’s Guide,
Part no. 000-6868.

Ingres (1994). INGRES/Object Management Extension User’s Guide,
Release 6.5 (1994). CA-OpenIngres.

OGC (1998). The OpenGIS Guide, Third edition. An introduction to
Interoperable Geo-processing. The OGC Project Technical
Committee of OpenGIS Consortium, edited by Buhler and K.
McKee, L., Wayland, Mass., USA

OGC (1999). OpenGIS Simple Features Specification for SQL.
Revision 1.1, OpenGIS Project Document 99-049

OGC (2001). OpenGIS Specification, 2001, available on
http://www.opengis.org/techno/spec.htm.

Oosterom, P. v, J. Stoter, W. Quak and S. Zlatanova, (2002). The
balance between geometry and topology, in: Advances in Spatial
data Handling, 10th International Symposium on Spatial Data
Handling, D. Richardson and P. van Oosterum (Eds.), Springer-
Verlag, Berlin, pp. 209-224

Oracle (2001). Oracle Spatial User’s Guide and Reference Release
9.0.1 Part Number A88805-01, June 2001

Stoter, J.E., (2000). Needs, possibilities and constraints to develop a
3D cadastral registration system. In: Proceedings 22nd Urban Data
Management Symposium ‘Orban and Rural data Management

3D Spatial Object Data Structure 15

Common Problems-Common Solutions’, vol. III, Delft, The
Netherlands, pp. 43-58.

Stoter, J.E and Zlatanova (2002). 3D Large Scale Modelling,
Workshop on 3D cadastre and Large Scale Modelling, organized
during UDMS 2002, October 2002, Prague, Tsjech Republic

Stoter, J. E, Zlatanova, S., (2003). Visualising and editing of 3D
objects organized in a DBMS. In: Proceedings EUROSDR
Workshop: Rendering and Visualisation, January 2003, Enschede,
the Netherlands, 14pp, CD-ROM.

