LQG WITH FUZZY CORRECTION MECHANISM IN
TILTING RAILWAY VEHICLE CONTROL DESIGN.

Hairi Zamzuri! Argyrios C. Zolotas Roger M. Goodall

Control Systems Group,
Department of Electronic and Electrical Engineering,
Loughborough University, Ashby Road, Loughborough,
LEI1I 3TU, UK

Abstract:

This paper present work on modern control approaches in titling railway vehicles. The de-
sign of the Linear Quadratic Gaussian with integral action controller provides the required
tilt compensation, while the addition of the fuzzy mechanism to the controller improves
the system performance both for the deterministic and stochastic track. Moreover, the use
of multiobjective GA as a tuning method seeks an optimum value based on the imposed
constraints in the objective functions. Copyright(c) 2007 IFAC
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1. INTRODUCTION

Modern control approaches such as LQG (Linear
Quadratic Gaussian ) are attractive methods used
when multiple control objective problems need to be
addressed simultaneously. The aim of the linear opti-
mal controller design is to find the control gain that
provides the best possible performance with respect to
a given performance index.

The use of fuzzy logic in control design has become
wider in the control fields also the use of heuristic lan-
guage in fuzzy logic gives advantages to implementa-
tion as it is based on the knowledge and experience of
the designer.

In this paper, the authors present work based on linear
quadratic methods on the application of tilting railway
vehicle control. Moreover, the use of fuzzy correction
as an ’add on’ in the linear quadratic controller im-
proves the overall performance of the system.

L The corresponding author is also attached to Universiti Teknologi
Malaysia, Kuala Lumpur, Malaysia email :h.zamzuri @lboro.ac.uk,
hairi @citycampus.utm.my

2. TILTING HIGH SPEED RAILWAY VEHICLE.

The use of tilting technologies in high speed train
running on conventional tracks decreases the journey
time between two places. Non-tilting conventional
trains operated at slower speeds on curved track due
to the lateral force acting on the vehicle. By leaning
the vehicle train inwards on curved sections reduces
the lateral force, thus allowing an increase in speed
of the train while maintaining appropriate passenger
lateral accelerations.

Railway vehicles are dynamically complex systems
characterised by a significant coupling between the
lateral and roll motion often referred to as the ’sway
modes’ (see Figure 1). The mathematical model of
the system is based upon the end-view of a railway
vehicle, to incorporate both the lateral and roll degrees
of freedom for both the body and the bogie struc-
tures. A pair of airsprings represents the secondary
suspension, whilst the primary suspension is modelled
via pairs of parallel spring/damper combinations. The
stiffness/damping of an anti-roll bar connected be-
tween the body and the bogie is also included. Active



tilting is provided by using an ‘active anti-roll bar’
(Pearson et al., 1998).

The tilt model system can be represented in state space
by :

T=Ax + Bu+Tw
y=Cax ()
where A € R" ™ and B € R™"*™ and C € RP*"

and n,m and p represent the number of states, control
inputs and outputs respectively.

Consider w as constant external disturbance matrix
given by,
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and u = [d,]. For the parameters see section Notation.
The output measurement of the system is the effective
cant deficiency (e.c.d), 04, which gives 60% tilt com-
pensation to the tilt angle given by

Yom
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where §j,.,, is the lateral acceleration provided from
the body lateral accelerometer and 6. is the secondary
suspension angle. (Note: the negative sign used for
correct feedback compensation).

Moreover, the variety of track inputs also contribute
to the complex system which can be categorised into
deterministic and stochastic. Deterministic inputs re-
fer to the curved track which is carefully designed by
civil engineers to meet the requirement of the pas-
senger comfort index. The curved track is leaned in-
ward(elevated) around 6° rising linearly over a period
of 2-3 seconds at the transition of the start and end
of the curve. The stochastic track input represents the
deviations of the actual track from the intended align-
ment, irregularities which occur in the vertical, lateral
and cross-level directions. The secondary suspension
of the vehicle is designed to reduce the effect of track
irregularities, expressed in RMS acceleration levels in
the body of the vehicle. In principal, the design of the
tilt controller is to provide a fast response related to the
transition to and from the curves, but at the same time
does not affect the responses on track irregularities, i.e
the ride quality on straight track.

Current tilting trains now use ’precedence’ tilt control
strategies (Goodall, 1999), whereby a bogie-mounted
accelerometer is used to developed a tilt command
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Fig. 1. End-view of the vehicle model

signal by measuring the curving acceleration on the
non-tilting part of the vehicle. However, because the
accelerometer also measures high frequency move-
ments associated with lateral track irregularities, it
is necessary to filter the signal. This filtering action
(time delay) creates a detrimental performance on the
transition from straight track to curved section. The
usual solution is to use an accelerometer signal from
the vehicle in front to provide “precedence”, carefully
designed so that the delay introduced by the filter
compensates for the preview time corresponding to a
vehicle length.

Research reported (Zolotas and Goodall, 2000) used
local-per-vehicle nulling-type tilt control using mod-
ern approaches while, (Zolotas, 2002) reveal the dis-
advantages of using local feedback PI controller. Re-
searchers in their paper (Zamzuri et al., 2005) inves-
tigated the capability of using a fuzzy controller in
local loop control schemes; they also introduced a
fuzzy mechanism, as a correction in PID controller,
to improve the performance on curved track while
minimizing the effect of straight track irregularities.
In this paper, a linear quadratic control scheme with a
Kalman observer is used with fuzzy correction mech-
anism, to further improve the response both on curved
track and track irregularities.

3. LQG TILT CONTROLLER DESIGN WITH
INTEGRAL ACTION.

The difficulty of designing the tilt controller for rail-
way vehicles is to minimize the effect of track irregu-
larities to the vehicle while providing the fast response
on curved track. This is more critical when the train
is traveling at high speed (in this case, assumed 210
km/h; the conventional speed is 30 % slower). The
trade-off between both deterministic and stochastic
must be a compromise in order to achieve the desired
performance.

Figure 2 illustrates the combination of control law and
Kalman filter estimator forming the LQG compen-
sator. This solution is based on the separation prin-
ciple where the full state feedback controller LQR
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Fig. 2. LQG control scheme with integral action

and Kalman filter are designed independently and then
combined to form the LQG compensator.

In practical terms, the integral state needed for regu-
lation purpose, [ 64, is generated by the output mea-
surement of effective cant deficiency, 04, while the
states , x are estimated by the Kalman filter i.e 2.

3.1 The LOR design.

Referring to states equation (3) and Figure 2, the state
model is augmented with the integral of the effective
cant deficiency [ 04, to enhance the controller for
regulation purposes, i.e achieve required tilt compen-
sation without steady state errors. This gives an op-
timal PI controller (Dorato et al., 1995). The overall
system model with [ 04, is,

Gl s

where 2/ = [ 04y, and C” is the selector matrix for the
output of effective cant deficiency, 04,,. The control
law is given by

u(t) = —Kr2'(t) — Kpa(t) (6)
where the initial condition of integral is set to zero and

the quadratic performance index for state regulator is
given by

J:/Oo[f(t)TQi(t)+uT(t)Ru(t)]dt (7
0

where
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and u is angle of the tilt actuator §,, while matrix Q is
chosen as 10 x 10 diagonal matrix and R is the control
weight matrix.

3.2 Kalman state observer design.

Ideally, the original state space expression can be
used for the design of the Kalman filter. However, to

provide an accurate estimation model, the elements of
curved track state should be included into the state
vector rather than as a disturbance vector. Therefore,
the extended model is given by,

T = Arxp + Bru + Trwy 9)

where -
T = [:c fuﬂ (10)

and the output equation is given by
yr = Crxp + Dyu+v (11)

where v is sensor noise corruption and Cy, Dy are
based on the relative rows of A and Bj. The refor-
mulated state x; becomes

deterministic track

T = [yv 91) Yb Hb yv ev yb eb er 90 60 R_l ]T
(12)

while

w = [Rd,]" (13)
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Ay p is a "filter” matrix to force the pair (A, C}) ob-
servable, €; o chosen sufficiently small time constant
(i.e 0.001,0.002). The state estimate Kalman-Bucy
filter can be calculated by the following differential
equation,

Te = Apxe + Bru + Kf (Yk — C’kxeDku) (15)

where x. is the state estimate vector of the re-
formulated state and K is the Kalman filter gain.
The performance of the Kalman-Bucy filter was tuned
based on the variance matrix of noise track .y where
Qs fzdiag(Q’gf Q"= diag(1076,0.8573). Figure 3
shows the pa;siveRsystem responses between actual
and estimate output using the Kalman-Bucy filter. For
more details on the chosen parameters Qs and Ry s
for Kalman-Bucy filter, refer to (Zolotas, 2002).

3.3 LQOG tuning design : multiobjective GA.

In the LQG design, the choice of the weighting fac-
tors Q and R from equation (7) influence the overall
performance of the closed loop system.

Multiobjective genetic algorithms have been success-
ful tools of automatic design of controllers in var-
ious areas of control engineering (Chipperfield and
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Fig. 3. Kalman-Bucy Filter estimate for passive lateral
acceleration output responses.

Fleming, 1996; Popov et al., 2005). For multiobjective
problems there may not exist one solution which is the
best with respect to all objectives. Typical for multi-
objective problems, the existence of a set of solutions
which are superior compared to the other solutions in
the search space. In this study, multiobjective genetic
algorithms (MOGA) methods proposed by Fleming in
(Fonseca and Fleming, 1993) are used to obtain the
optimum values for the weighting matrix parameter Q
while parameter R is fixed to ;5= (This is actually
based on taking the value of the control weight as
Cmazeon tiolsignam ). LQ is a diagonal matrix for re-
laxing the computational burden. The objective func-
tions consists of 6 functions. These are (referring to

Figure 4),

(1) settling time at the steady state curve , ts; not
more than 4.5 seconds.

(2) optimize the lateral acceleration percentage over-
shoot,(%0S) when the train transverses into( fs)
and out from the curve( f3).

(3) optimize the lateral acceleration responses to a
system change based on the difference between
the actual and ideal lateral acceleration profile.
The calculation is based on the root mean square
of absolute lateral acceleration error from the
start (f4), and end of the curved (f5) transitions.

(4) stochastic ride quality,(fs): constrain the degra-
dation of the straight track ride quality within the
allowance of 7.5% worst taken between active
and passive system at high speed.

4. LQG DESIGN WITH FUZZY CORRECTION.

The overall output performance based on the con-
troller scheme proposed in section 3 give an accept-
able response. However, adding fuzzy correction pro-
posed in this section shows improvement to the out-
put responses. The objective of designing the control
scheme is to minimise the overshoot and oscillation
on curved track while reducing the effect of track
irregularities on straight track.
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Fig. 4. calculation of the overall performance on the
curved track.
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Figure 5 shows the controller scheme. The design is
based on the procedure of section 3.1, however the
output regulator is fed to the fuzzy corrector to further
accommodate for curved transition and straight track
performance. The fuzzy correction block is also fed by
the signal of body roll gyro as an additional decision
making variable.

The design of the controller can be divided into two
stages :

(1) design LQG controller with integral action to
give fast response on curved track (see section
3.1 and 3.2).

(2) tune fuzzy correction using multiobjective GA
(MOGA method) aimed at minimizing straight
track irregularities effect and preventing large
overshoot and oscillations on curved track.

The fuzzy correction mechanism, both inputs are
shown in Figure 6, consist of three equally distributed
gaussian Membership Functions with 50% overlap for
each signal. Furthermore, the Center of Area (COA)
defuzzification procedure with well known max-min
inference method.

The linguistic variables for each membership function
represent the condition for each value. For example,
the regulator output u’ is represented by the linguistic
variables Neg, Zero and Pos. For the body roll gyro
input égW, the linguistic variable are also Neg, Pos
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and zero, while for the fuzzy correction output u” , the
linguistic variables represent the tilting direction of the
car body as tilt the car body clockwise maximum rep-
resented by 7iltClkwM, and tilt car body medium anti-
clockwise represented by TiltAclkwm etc. Clockwise
and Anticlockwise characterize the direction of tilt
based on the curve direction (i.e inwards and outwards
of the curve respectively). Note that the membership
function ranges represent the required operating range
of the variables. The development of fuzzy rules were
based on :

e stabilizing the system: )
if u’ is changing fast and the 09Y"° is zero then
apply maximum tilt effort u”

e preventing overshoot and oscillation.
if u’ changes and égym changes then maintain
medium till effort u”

Detail on the rules is shown in Table 1,

Table 1. LQG-Fuzzy Correction Rule Base

099" °/u”  Neg Zero Pos

Neg TiltClkwm TiltClkwm TiltClkwM
Zero TiltAclkwM  NoChange TiltClkwM
Pos TiltAclkwM  TiltAclkwm  TiltAclkwm

4.1 Tuning the fuzzy correction mechanism: MOGA
method.

In this paper, the fuzzy correction is also tuned using
MOGA method proposed in section 3.1. The position
and width of the output fuzzy membership functions
(see Figure 5 off-line GA) are tuned based on 5 real
coded GA variables. The upper and lower limits on
the parameters are established based on the previous
control setup, see (Zamzuri et al., 2006) for more
details. The initial choice of the parameters and the
limits clearly reduce the computational time.

The output membership function consists of three
triangular membership functions and two trapezoidal
membership functions located at each end of the fuzzy
set . Figure 7 illustrates the concept of coding the
membership functions. The genetic algorithm seeks
the optimal profile (based on position and width of the
membership functions), except for the position of the
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Fig. 7. Tuning of position and width of membership
functions
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Fig. 8. Output membership function after tuned by
MOGA method.

membership function NoChange and those at the limit
of the range (TiltClkwM , TiltAclkwm).

In order to illustrate the advantages of using the fuzzy
correction mechanism, the objective function for this
scheme will be used as in the section 3.3. Figure
8 shows the output membership functions after tun-
ing by multiobjective genetic algorithms (MOGA)
method.

5. RESULTS AND ANALYSIS.

The system model was implemented using SIMULINK
while the GAs process is implemented in MATLAB.
A random initial population of size 30 and shuf-
fle crossover with binary mutation were used with
crossover and mutation probability of 0.9 and 0.02
respectively. Moreover, the system was simulated at
a speed of 210 km/h with 1000 m curve radius and 6°
cant angle (the track profile included 145 m transition
length at each end of the curved).

To highlight the advantages of using the fuzzy correc-
tion, the scheme proposed in section 4 was compared
with the control scheme proposed in section 3 (manual
and multi objective GA tuned). It is worth mentioning
that the only difference between these two control
schemes is the use of fuzzy correction mechanism.
Figure 5 shows the output responses on curved track
using LQG with difference tuning approaches (manual
and MOGA). The figure also illustrates the advantages
of using fuzzy mechanism as a correction factor on
the LQG design. The improvement is also shown for
the body lateral acceleration on straight track in Table



2. The ride quality degradation shown in the table is
the difference in rms values taken between the passive
(without controller: rms value= 0.381 %/g) and active
system traveling at high speed (58 m/s, 30% increase
compared to non-tilting speed).

Table 2. Body Ilateral acceleration on

straight track.
RMS values  Ride quality
(%lg) degradation (%)
LQG (manual tuned) 0.394 3.357
LQG (MOGA tuned) 0.377 -1.072
LQG with fuzzy correction  0.352 -7.546
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Fig. 9. Output responses for two different LQG control
schemes on curved track.

6. CONCLUSIONS.

This paper considered the design of LQG controller
design via tilt local feedback scheme. It was illustrated
that the use of LQG with integral action approaches
shown improved tilt performance both on straight and
curved track. The use of Kalman filter helps estimating
both the vehicle states and track disturbance states.

The use of GA tuning (MOGA approach) of the LQG
controller provided some improvement in ride quality
compared to the manual tuned LQG. However, the
incorporation of a fuzzy correction mechanism with

the LQG controller based on the use of GA tuning
(MOGA) provided a noticeable improvement both on
deterministic and stochastic track input excitations.
In particular, the fuzzy correction provided an extra
degree of freedom in the control design, while the
MOGA tuning allows for multiple objective to si-
multaneously being optimised (both deterministic and
stochastic considerations).

NOTATION
Yv,Yb.Yo  Lat. displacement of body, bogie and track.
0,,0p.0  Roll displacement of body, bogie and anti-roll bar actuator.
0, airspring reservoir roll deflection.
00,R Track cant, curve radius.
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