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A NEW NEAR OPTIMAL HARMONICS ELIMINATION PWM
ALGORITHM FOR AC TRACTION DRIVES

ZAINAL SALAM1 & CHEW TIT LYNN2

Abstract. For AC traction system, it is necessary to develop voltage source inverters (VSI) which
is compatible with existing types of signaling systems adopted by various railway operators. The
varying harmonics incidents of conventional sinusoidal-type PWM VSI is not particularly suitable as
it produces unwanted harmonics within the signaling frequency band. One well-known solution to
ensure that the unwanted harmonics do not appear on the spectra is by using the harmonics elimination
PWM (HEPWM) switching method. However, the application of HEPWM has been somewhat
limited by the fact that the switching angles cannot be calculated online by a microprocessor-based
waveform generator. This is due to the fact that the equations involved are non-linear and transcenden-
tal in nature. The paper presents an algorithm to calculate near optimal switching angles, which will
permit a fast and efficient realization using a microprocessor. The method is based on quadratic
approximation approach which is derived from the computed trajectories of angles.
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1.0 INTRODUCTION

Induction motor is preferred over its DC counterpart for railway traction applications
due to its robustness, lower maintenance, higher power to weight ratio and lower cost
to power ratio. However, if AC traction drives are to be made available on a competi-
tive basis with DC drives for rail applications, it is necessary to develop voltage source
inverters (VSI) compatible with existing types of signaling systems adopted by vari-
ous railway operators. For DC drive systems which use carrier-only power frequency
track circuits, the signaling requirements are met by selecting one or more chopper
operating frequencies that avoid signal equipment carrier frequencies [1]. However,
the case for VSI induction motor drive is somewhat more complicated. The varying
harmonics incident may produce unwanted harmonics within the signaling frequency
band. One well-known solution to overcome such problem is by using the harmonics
elimination PWM (HEPWM) switching method for VSI.

HEPWM, originally proposed by Patel and Hoft [1], is a method to eliminate se-
lected harmonics from the PWM waveform spectra. Unfortunately, as the equations to
calculate switching angles in a HEPWM scheme are non-linear and transcendental,
i.e. they cannot be solved online by a microprocessor. They can be calculated off-line
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using well-known numerical techniques, but such operation requires large computa-
tional power. Furthermore, the exact switching angles for the whole frequency range,
for a given ratio changing scheme, have to be pre-calculated (off-line) for a given
voltage/frequency characteristics and DC link voltage. With a large number of possi-
bilities of modulation index and modulation ratio, and the interpolation involved, the
memory requirement can be very large. Despite these difficulties, HEPWM offers
several advantages over the conventional PWM methods that are listed as follows:

1. For a given inverter switching frequency, the first uneliminated harmonic is al-
most double that for a natural or regular-sampled PWM scheme, thus resulting
in a far superior pole switching waveform harmonic spectrum.

2. A much higher pole switching waveform fundamental amplitude is attainable
before the minimum pulse-width limit of the inverter is reached.

3. About 50% reduction in the inverter switching frequency is achieved when com-
paring with the conventional carrier-modulated sine PWM scheme. The reduc-
tion in the switching frequency contributes to the reduction in the switching losses
of the inverter and permits the use of high power switches in railway applications.

4. Higher voltage gain due to overmodulation is possible. This contributes to higher
utilization of the power conversion process.

5. Due to the high quality of the output voltage and current, the ripple in the dc link
current is also small. Thus, a reduction in the size of the dc link filter components
is achieved.

Besides the off-line method suggested in [1], there exist several methods to generate
on-line HEPWM waveforms. The most prominent of such work was published by
Taufiq et al. [2] who derived a set of non-transcendental equations for near-optimal
solution using sine-wave approximation approach. Using this scheme, the transcen-
dental equations are “reduced” to a simpler form which permits on-line HEPWM
computation using digital methods. Another scheme, based on regular sampled PWM
technique was suggested by Bowes [3]. Other works are mostly based on pre-calcu-
lated angles which are stored in memory. These are referred to as pre-programmed
harmonic elimination method. Reference [4] provides excellent review of this tech-
nique.

This paper proposes a new method of near-optimal harmonics elimination method
based on quadratic-approximated equations. It is envisaged that the proposed method
permits even faster and more efficient harmonic elimination PWM waveforms due to
the simplicity of the algorithm.

2.0 DERIVATION OF NEAR-OPTIMAL HEPWM EQUATIONS

Figure 1 shows a generalized output waveform with M chops per half-cycle. It is as-
sumed that the periodic waveform has half-wave symmetry and unit amplitude. The
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basic square wave is chopped a number of times and a fixed relationship between the
number of chops and possible number of harmonics that can be eliminated is de-
rived. The odd switching angles, α1, α3, etc., define the negative going transitions
and the even switching angles, α2, α4, etc. define the positive going transitions.

Figure 1 Generalized quarter-wave symmetric PWM waveform
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As the waveform is quarter-wave symmetric, only odd harmonics exist and are
given by the following Fourier series representation:
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Equation (2) has m variables (α1 to αm) and a set of solutions is obtainable by
equating any m-1 harmonics to zero and assigning a value to the fundamental. Thus
both the harmonics incidents and the fundamental components can be independently
controlled. These equations are nonlinear as well as transcendental in nature and can
be solved using numerical method such as the Newton-Raphson iteration. This method
produces accurate solutions and good convergence provided that the initial guess for
the switching angles is near the local minima. Using proper programming techniques,
the trajectories for the switching angles (α1, α3, ... αm) versus the amplitude of the
fundamental component of the pole switching waveform (NP1) for odd number of
switching per quarter cycle can be obtained. Figures 2(a)-(d) show some trajectories
calculated for m=3,5, 7 and 13, respectively.
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From, the trajectories in Figures 2(a)-(d) the highest intersection point for the trajec-
tories with the y-axis is 60o. Furthermore, the switching angle αm is equal to when NP1
is equal to zero, for all values of m. From Figure 3, the angular separation of the
trajectories at the y-axis is can be defined as:

Angular separation  
2 × 60
m +1

, m is odd (4)

It can also be seen from Figure 3, for NP1 ranges from 0 to 0.8, the trajectories
approximates a straight line. Hence a straight-line approximation of the trajectories
could be used. However, for NP1 greater than 0.8, the trajectories are no longer straight
lines. Nevertheless, the straight-line approximation could still be used with an error
correction scheme for the region of NP1 greater than 0.8.

    (a)      (b) 

Figure 2 Trajectories of switching angles for an odd number of switchings per quarter cycle:
(a)m=3, (b)m=5, (c)m=7, (d)m=13

(d)(c)

(b)(a)
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Observing Figures 2(a)-(d), the trajectories of the odd and the even switching angles
are apparently parallel lines over most of the range of NP1. Also the slopes of the
trajectories reduce with increasing values of m. Therefore, to obtain a relationship
between the slopes of the trajectories for the different values of m, the slopes should
first be normalized towards the angular separation of the trajectories. At NP1 = 0.8,

Slope of the trajectories 
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Let  ∆k  = normalized slope ×0.8. Then
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Figure 3 Trajectories for m = 5 to illustrate angular separation
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Equations (7) and (8) are used to plot out   versus k in separate graphs for odd k and
even k as shown in Figure 4 and 5, respectively.

Figure 4 Variation of ∆k towards k for several values of m (for odd k)

Figure 5 Variation of ∆k towards k for several values of m (for even k)

Figure 4 shows the variation of ∆k, for odd and even values of k, for several values
of m. The graphs suggest that for odd values of k, the function ∆k is rather like a set of
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quadratic curves with nearly constant amplitude. Therefore, the obvious solution would
be to apply a quadratic fit to the curves in Figure 4. This leads the generalized equation
for the odd values of ∆k which will be of the form,

2

2
0.21 1

0.4025
2
+ ∆ = − − +  k

m
k

m
, for k odd (9)

The complete derivation of equations for the quadratic-approximated curves of the
variation of ∆k with k for odd values of k is shown in appendix A. The results is a
generalized equation for the odd switching angles, for any value of m and NP1, is
given by the equation below,

( )60 1 12 60
1 1 0.8

α
 + ∆ ××= − × + + 

k
k

k NP
m m  , for k odd (10)

Figure 5 shows the variation of ∆k for the even switching angles. Extrapolation
shows that all the curves pass through the origin. For increasing values of m, the values
of ∆m–1 appear to be asymptotic to a line drawn parallel to the x-axis and intersecting
the y-axis at 0.325. Taking this into account, the generalized equation for the even
values of ∆k will be of the form given in the equation below,

( )
( ) 2

2 3
0.082

2.482 1 0.505
1

∆ = − − − + −  −
k

k
k m

mm  , for k even (11)

The derivation of equations for the quadratic-approximated curves of the variation
of   with k for even values of k is as shown in Appendix B. The generalized algorithm
for the even switching angles for any value of m and NP1, is then given by:

160 2 60
1 1 0.8

α
 ∆ ×× ×= + × + + 

k
k

NPk
m m  , for even k (12)

Equations (9), (10), (11) and (12) can now be used to calculate the approximate switch-
ing angles for any value of m and NP1. These simple equations can be implemented
easily on a 16-bit microprocessor which has the multiplication command in its instruc-
tion set thus, allowing very fast and efficient generation of the PWM waveform online.
The accuracy of the algorithm is investigated in the following section.

3.0 ACCURACY OF THE GENERALIZED ALGORITHM

The accuracy of the derived equations is evaluated by calculating the difference be-
tween the approximate switching angles from the proposed method and the exact
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switching angles from the trajectories. The absolute difference is termed as the angle
error. The angle errors relationship with NP1 and the kth angle for values of m=3, 5, 7,
9, 11 and 13, are shown in Figures 6(a) through (f), respectively. For each of the six

  (a)      (b)  

 

Figure 6 Variation of switching angle errors for (a) m=3, (b) m=5, (c) m=7, (d) m=9, (e) m=11,
(f)m=13

(b)(a)

(d)(c)

(f)(e)
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cases, the angle error trend is very small for NP1 less than 0.8. In addition the errors
reduce for increasing values of m. However for values of NP1 greater than 0.8, the
errors increase drastically. The reason for this increase can be attributed to the depar-
ture of the trajectories from being straight lines for NP1 above 0.8. On this basis, for
NP1 greater than 0.8, a correction factor need to be incorporated to the switching
angles to reduce the error. The maximum angle errors for 0 < NP1 ≤ 0.8 and 0.8 < NP1
m 1.15 are tabulated in Table 1 and 2.

Table 1 Maximum errors in switching angles for 0 < NP1 ≤ 0.8

m Maximum error for odd Maximum error for even
switching angles (degree)  switching angles (degree)

3 0.6795 0.8967

5 0.3242 0.4535

7 0.2759 0.3469

9 0.2136 0.2232

11 0.1784 0.1582

13 0.1533 0.1154

Table 2 Maximum errors in switching angles for 0.8 < NP1 ≤ 1.15

m Maximum error for odd Maximum error for even
switching angles (degree)  switching angles (degree)

3 8.3785 8.6192

5 4.2015 4.3793

7 2.6184 2.8355

9 2.2420 2.1003

11 1.9446 1.9688

13 1.4446 1.4038

4.0 ERROR CORRECTION

To account for the relatively large error for the case of 0.8 < NP1 ≤ 1.15, an error
correction factor is incorporated. For NP1 > 0.8, and k is odd,
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( )α α= − ∆k kk corrected D (13)

with

( )2 21 0.8 52 13
0.5

0.09 5

 −  ∆ = × − − +  +   
k

NP k
D

m m m  , k odd (14)

While for even switching angles at NP1 > 0.8, the error correction factor is incorpo-
rated as before in the previous equation shown:

( )α α= − ∆k kk corrected D (15)

with

( )2 21 0.8 52 13
0.5

0.09 3

 −  ∆ = × − − +  +   
k

NP k
D

m m m  , k even (16)

5.0 ACCURACY OF GENERALIZED ALGORITHM
INCORPORATING CORRECTION FACTOR

Figures 9(a) through (f) show the absolute error between the exact switching angles
and those calculated with the approximated quadratic equations, incorporating the
correction factors. Comparing Figures 6(a) through (f), it could be seen that the maxi-
mum errors have been reduced by a factor of 3-6 times. Table 3 shows the maximum
errors at 0.8 < NP1 ≤ 1.15 with and without error correction factor.

  
(b)(a)
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Figure 9 Variation of error, mincorporating error correction for NP1>0.8 (for m=3,5,7,9,11,13)

 

 
(f)(e)

(d)(c)

Table 3 Maximum error in switching angles with and without error correction for 0.8 < NP1 ≤
1.15

Without correction With correction

m Max. error for odd Max. error for even Max. error for odd Max. error for even
switching angles switching angles switching angles switching angles

(degree) (degree) (degree) (degree)

3 8.3785 8.6192 2.8490 3.3764

5 4.2015 4.3793 0.6626 0.9819

7 2.6184 2.8355 0.3697 0.6173

9 2.2420 2.1003 0.4186 0.2294

11 1.9446 1.9688 0.3606 0.4798

13 1.4446 1.4038 0.2411 0.2844
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6.0 HARMONICS PERFORMANCE

Finally the harmonics performance of the proposed algorithm is evaluated. Figures
10(a) through (f) show the comparison of the total absolute errors of the harmonic
amplitudes between the proposed approach using quadratic approximation and the
sine-wave approximation method suggested by [2]. The harmonic error is defined as
the ratio of the harmonic to the fundamental component. From these figures, it could
be seen that for small m, the amplitudes of the harmonics error (that are supposedly
eliminated) is smaller than the ones generated by the sine-wave approximation ap-
proach. For larger m, the harmonics using both methods are nearly the same. In the
overall, the harmonic errors are very small; the worst-case harmonic is less than 1.5% of
the fundamental component. For higher value of m, the harmonics will improve. There-
fore it can be concluded that the proposed algorithm is accurate enough to substitute
for the original harmonic elimination equations. Furthermore, it is expected that the
proposed method requires less computing time because it involves only multiplica-
tion procedure.

Quadratic Approximation
(proposed)
Sine-wave
Approximation [2]

(b)(a)

(d)(c)
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Figure 10 Total absolute errors for harmonics. (a)m=5 and NP1=1 (b)m=7 and NP1=0.8 (c)m=9
and NP1=1 05 (d) for m=11 and NP1=0.5 (e)m=13 and NP1=0.5 (f)m=23 NP1=1.1

7.0 CONCLUSION

 The report has successfully proposes an algorithm to calculate the switching angles
using harmonic elimination PWM scheme for odd number of switching angles per
quarter cycle. The algorithm results in quadratic equations which require only the
multiplication process and therefore, can be implemented efficiently on a micropro-
cessor. Any changes to the number of harmonics to be eliminated and also the funda-
mental amplitude of the pole switching waveform can be made online using this
optimized PWM scheme.

Thus both the harmonics incidents and the fundamental components can be inde-
pendently controlled. For AC traction application, the flexibility to change the funda-
mental amplitude is particularly important when the DC link voltage of the inverter
varies due to the absence of a preconditioning chopper. Such a variation can be taken
into account by a microprocessor, by online recalculation of the new switching angles
such that the fundamental component of the inverter output voltage is maintained
constant.

Finally it is important to note that although this paper has concentrated on the use of
on-line HEPWM for VSI in railway traction application, the algorithm derived can be
also be suitably used in industrial VSI drives.
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APPENDIX A (Derivation of switching angle equation for odd k)

From Figure 4, a suitable equation for the curves using the quadratic fit would be,

( )2∆ = − − +k a k b c (A1)

From the same figure,

c = 0.4025 (A2)

1
0.5

2 2
+= + =m m

b  (A3)

∆k  = 0.35 at k = 0.5  (A4)

Substitute (A1), (A2) and (A3) in (A1),

2

2

1
0.35 0.5 0.4025

2
0.21

+ = − − +  

=

m
a

a
m

 (A5)

Substitute (A2), (A3) and (A5) in (A1),

2

2
0.21 1

0.4025
2
+ ∆ = − − +  k

m
k

m
, for odd k (A6)

With a straight line approximation, ∆k will reduce linearly to zero at NP1 equal to zero.
Thus, the generalized algorithm for the odd switching angles, for any value of m and
NP1, is given by the equation below,

( )60 1 12 60
1 1 0.8

α
 + ∆ ××= − × + + 

k
k

k NP
m m  , for k odd (A7)
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APPENDIX B (Derivation of switching angle equation for even k)

From Figure 5, a suitable equation for the curves using the quadratic fit would be of
the form,

( )2∆ = − − +k a k b c (B1)

From the figure, it could be seen that ∆k = 0.325 at k = m − 1  for m = 13 and above but
assume m = 11 and below to have the same point too. With ∆k = 0.325 at k = m − 1,

0.325 = −a(m − 1 − b)2 + c (B2)

While 
1

2
−= m

k   for every curve,   is found to be very near the value of 0.183. With ∆k

= 0.183 at  
1

2
−= m

k ,

21
0.183

2
− = − − +  

m
a b c  (B3)

Since ∆k = 0 at k = 0, then

20 = − +ab c (B4)

Subtract (B4) from (B2),

( )
( )

2 2

2 2

0.325 1

0.325 1

= − − − +

 = − − − − 

a m b ab

a m b b

From ( )( )2 2− = + −a b a b a b ,

( )( )0.325 1 1 2= − − − −a m m b (B5)

Subtract (B4) from (B3),

21 20.183
2

21 20.183
2

− = − − +  
 −  = − − −    

m
a b ab

m
a b b
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From ( )( )2 2− = + −a b a b a b ,

( )

1 1
0.183 2

2 2

1
0.366 1 2

2

− −  = − −    
− = − − −  

m m
a b

m
a m b

(B6)

Divide (B5) with (B6),

( )

( )

1 2
0.888

1
2

2
2.482 1b

− −
= − −

= −

m b
m

b

m (B7)

Substitute (B7) in (B5),

( ) ( )( )( )

( )2

0.325 1 1 2 2.482 1

0.082

1

= − − − − −

=
−

a m m m

a
m

(B8)

Substitute (B7) and (B8) in (B4),

( )
( )( )2

2
0.082

0 2.482 1
1

0.505

 
= − − + 

−  
=

m c
m

c
(B9)

Substitute (B7), (B8) and (B9) in (B1) yields:

( )
( ) 2

2
0.082

2.482 1 0.505
1

∆ = − − − +  −
k k m

m (B10)

From the curves in the Figure 5, it could be seen that only for m=13 and above, ∆k
= 0.325 at k=m–1 while for m=11 and below, at k=m–1, ∆k gradually decreases from
0.325 in a curve as shown in the figure. So Equation (B10) is only accurate for m=13
and above and an error correction method needs to be carried out so that the errors
for m=11 and below could be reduced to an acceptable range. From the errors gener-
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ated through programming from m=3 to m=13 for ∆k (error= ∆k quadratic – ∆k actual), the
errors increase from k=2 to k=12. Therefore, while the values for 1/m2 may somewhat
be like a majority of the errors, it is more suitable to use another expression to repre-
sent the equations. k/m3 is found to be a more suitable replacement with the variable
k in the equation minimizing the errors at a smaller k, as is the condition with the
errors generated.

As a conclusion, the correct the errors of Equation (B10), k/m3 is subtracted from it
as shown below,

( )
( ) 2

2 3
0.082

2.482 1 0.505
1

∆ = − − − + −  −
k

k
k m

mm  for even k (B11)

The generalized algorithm for the even switching angles for any value of m and
NP1, is then given by:

160 2 60
1 1 0.8

α
 ∆ ×× ×= + × + + 

k
k

NPk
m m , for even k (B12)
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