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ABSTRACT 

 

 

 

 

 In tropical country like Malaysia, hot and wet weather encourages the 

formation of filled joint, which is one of the most critical discontinuities that affect 

the stability of rock mass.  It is therefore essential to study the characteristics and 

behaviours of filled joint to understand their effect on rock mass.  Filled joint 

resulting from in situ deposition of infilling in the joint aperture was the main focus 

of this study.  Dominant components of this filled joint were identified and 

accordingly modeled in the laboratory tests.  A large shear box apparatus (300mm 

square section) has been designed and fabricated specifically to simulate the loading 

configurations on the filled joint model.  Cast concrete of different surface roughness 

(planar to rough) was used as joint block.  Joint aperture was filled with actual infill 

material, with thickness between 5 to 15 mm (average density before shear of 

approximately 1800 kg/m3).  The normal stress applied during shear was between 

130 to 370 kPa, equivalent to typical slope height of 5 to 15 m.  The study showed 

that the shear resistance of rough filled joint reduces with increasing infill thickness 

and eventually approaches the shear strength of the infill material.  Infill thickness 

has no significant effect on the shear strength of filled joint with smooth surface 

texture as its shear strength is almost similar to that of the infill.  Nevertheless, with 

very thin infill (approximately thickness of an infill particle) in smooth joint, the 

resultant shear resistance is much lower than that of the infill.  This implies that the 

weakest shear plane of a filled joint might not lie within the infill, but at the interface 

between infill and joint surface.  Crushing of infill particles has been noted to 

influence the shear and compressive behaviours of filled joint. 
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ABSTRAK 

 

 

 

 

 Di negara tropika seperti Malaysia, cuaca yang panas dan lembap sepanjang 

tahun mendorong pembentukan kekar berinti yang mana merupakan salah satu 

daripada ketakselanjaran kritikal yang utama yang mempengaruhi kestabilan jasad 

batuan.  Oleh itu, sifat dan kelakuan kekar berinti mesti dikaji untuk memahami 

pengaruhnya terhadap jasad batu.  Satu kekar berinti yang terbentuk daripada 

pemendakan bahan inti ke dalam bukaan kekar dikaji dalam projek ini.  Unsur-unsur 

utama sistem kekar berinti yang dimendapkan ke dalam bukaan kekar ini telah 

dikenalpasti dan disimulasikan dalam kajian makmal.  Dalam projek ini, sebuah alat 

ricih besar (300 x 300mm) telah direkabentuk secara khusus untuk menyimulasikan 

kesan beban terhadap kekar berinti.  Blok konkrit dengan pelbagai tekstur permukaan 

(dari rata ke kasar) dijadikan sebagai blok kekar.  Bukaan kekar diisikan dengan 

bahan inti sebenar dengan ketebalannya di antara 5 ke 15 mm (purata ketumpatan 

sebelum ricih dianggarkan sebagai 1800 kg/m3).  Tegasan normal yang dikenakan 

semasa ricihan adalah di antara 130 ke 370 kPa, iaitu menyerupai cerun batuan 

setinggi 5 hingga 15m.  Hasil kajian menunjukkan bahawa, dalam kekar bermuka 

kasar, kekuatan rich didapati berkurangan apabila ketebalan inti bertambah.  Apabila 

ketebalan inti menjadi sangat tebal, kekuatannya menyerupai kekuatan bahan inti 

sahaja.  Ketebalan inti didapati tidak mempengaruhi kekar bermuka rata, yang 

kekuatan ricihnya hampir sama dengan kekuatan bahan inti.  Walau bagaimanapun, 

dengan wujudnya lapisan inti yang sangat nipis (setebal satu butiran) di antara 

permukaan rata, kekar akan menjadi lebih lemah daripada bahan inti.  Ini 

membuktikan bahawa kegagalan ricih tidak semestinya berlaku dalam lapisan inti, 

tetapi mungkin pada sempadan di antara inti dan permukaan kekar.  Retakan dan 

pecahan butiran inti telah dikenalpasti dapat mempengaruhi kelakuan ricihan dan 

mampatan kekar berinti.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Geological processes and environment such as tectonic movements and 

cooling of magma tend to create various geological structures and discontinuities in 

rock masses such as fold, fault and joint.  Due to the presence of these 

discontinuities, rock masses are often weak, anisotropic and inhomogeneous.  

Consequently, excavation work in rock can be subjected to various problems, 

particularly in terms of stability.  Among these discontinuities, joints are the most 

common weakness planes found in rock outcrops in Malaysia, particularly in igneous 

rock. 

 

 

In tropical countries, high temperature and high rate of rainfall help to induce 

a desirable environment for continuous and intensive weathering to take place in 

rock.  Weathering affects surface of rock mass.  However, through the joint  

(secondary permeability), water and other weathering agents can penetrate deeper 

into the rock masses.  This allows greater weathering effect on the internal portion of 

the rock.  Upon weathering, the material of the joint surface is being disintegrated 

and decomposed to form a completely weathered material which is very much 
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weaker than the host rock.  This leads to the accumulation of weak infill material in 

the joint aperture, in other words, a completely weathered material is “sandwiched” 

in between the joint blocks.  In-situ deposition, on the other hand, involves the in-

wash of surface materials into the originally open joint (infill material not resulted by 

gradual weathering of host rock).  Both weathering of the joint surface and the in-situ 

deposition in the joint aperture are the processes that lead to the formation of the 

most critical type of joint in rock, namely filled joint. 

 

 

The presence of weathered material in joint aperture, which is normally much 

weaker than the joint blocks, induces a high degree of inhomogeneity into this 

weakness plane.  Inhomogeneity leads to the unique behaviours of filled joint.  

Normally, materials that fill the joint apertures are highly weathered rock of grade V 

(completely weathered rock) and grade VI (residual soils).  The infilling material is 

often more compressible and crushable than the intact rock.  The different particle 

size, shape and mineral composition induce a significant variation in the properties of 

the granular infill material.  Together with the weathered joint surface, the nature of 

contact between the interfacing joint surfaces and the nature of the infill create a very 

complex deformational behaviour of filled joints as compared to unfilled (clean) 

joint.   

 

 

In summary, filled joint is one of the most critical discontinuities in rock 

mass.  It often exhibits high deformability and low shear strength when subjected to 

loading.  These characteristics appear to be unfavourable for any civil engineering 

constructions particularly when it involves excavation of rock mass.  They may 

induce instability to excavated surfaces such as rock slopes and tunnel walls.  

Therefore, the properties and behaviours of filled joints must be understood and 

appropriately interpreted to ensure adequate information is available for the design 

and construction of structure in rock mass that consists of filled joint. 
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1.2 Background Problems 

  

 

Being the most critical discontinuity in rock masses, filled joint poses several 

engineering problems.  Specifically, its deformability, compressibility and shear 

strength behaviours are thought to be detrimental to the stability of any excavation in 

rock.  In addition, each constitutive component of filled joint, such as joint surface, 

infill material and joint blocks, displays its own discrete characteristics.  Each 

characteristic of the constitutive component contributes to the behaviours of filled 

joint interactively.  Therefore, sufficient knowledge on the characteristics of each 

relevant component is essential in order to understand the overall behaviours of filled 

joint.  

 

 

 Behaviours and properties of filled joint are reckoned to be critical to 

excavation in rock mass.  Due to its uniqueness and complexity, extensive and 

detailed study must be carried out on this critical discontinuity.  In-situ testing, full-

scale laboratory modeling and computer simulation are often used to study the 

behaviours of filled joint comprehensively.  However, these methods are relatively 

expensive and complex to be undertaken.  Moreover, sampling of undisturbed filled 

joint for laboratory testing is almost impossible to be conducted.  Therefore, an 

appropriate method in interpreting the behaviour and criticality of filled joint is 

essential.  This method should be suitable to characterise filled joint, specifically its 

characteristics that are relevant to construction.  These characteristics must be those 

properties that can be easily measured and evaluated using relatively simple 

laboratory and field tests. 
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1.3 Objectives of Study 

 

 

This study is undertaken in order to achieve the following objectives:  

 

 

1. To select and to verify the physical properties of filled joint that are 

relevant to the behaviour of filled joints. 

 

2. To establish the characteristics of the selected components (in the field 

and laboratory) and subsequently to verify the effect of these components 

on the behaviour of filled joint.  

 

3. To establish the typical behaviours of filled joint under shear loading and 

the interacting effect of its constitutive components, using a specially 

fabricated large shear box 

 

 

 

 

1.4 Significance of Study 

 

 

The behaviour of filled joint specifically under shear load is significantly 

affected by its constitutive components, which include type of infill, surface of joint 

blocks and thickness of infill.  By verifying the interacting effect between these 

components, a general behaviour of filled joint can be established.  The general 

behaviour of filled joint, particularly with respect to shear loading, is an important 

information to be considered in designing a structure associated with excavation in 

rock mass.  The established behaviour may serve as guidelines in evaluating the level 

of criticality of filled joint on any excavated surface in rock. 
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1.5 Scopes of Study 

 

 

The scopes of this study, among others, cover the following aspects: 

 

 

1. A filled joint resulting from in-situ deposition and with granular, granite 

residual soils as infilling. 

 

2. Characteristics of filled joint components selected for study are thickness of 

the infill, type of infill and roughness of joint surface. 

 

3. Laboratory tests were carried out on model of filled joint consisting of cast 

concrete as joint block (flat surface and saw-toothed surface) and granular 

granite residual soil as infill material (dry, average density of 1842 kg/m3). 

 

4. Deformational behaviours of filled joint under shear loading at various 

normal load (130 to 390 kPa), infill thickness and roughness of joint surface 

were types of test set-up being investigated. 

 

 

 

 

1.6  Organisation of Thesis 

 

 

 This thesis consists of five chapters.  Introduction, background problems, 

objectives and scopes of study and its significance are mentioned in Chapter 1.  

Chapter 2 comprises of some important theories and past researches about filled 

joint.  Chapter 3 is all about the methodology of this research, which includes site 

investigations, laboratory assessments, and the fabrication of the equipment.  The 

results, analysis, and interpretation from the experiments are discussed in Chapter 4.  

And, lastly, Chapter 5 summarizes the research findings and also some 

recommendations for further researches. 
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