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ABSTRACT 

 

 

 

 Conventional methods for the preparation of amorphous silica (SiO2) are 

very energy-intensive and expensive. Amorphous silica has wide industrial 

applications, with annual world consumption in the excess of 1 million tonnes 

valued at RM4,500 per tonne. Rice husk ash contains amorphous silica in the excess 

of 95 wt%. Thermal treatment of rice husk is deemed the most economical method 

to recover this amorphous silica from the readily available rice husk (approximately 

0.5 million tonnes per annum in Malaysia). Hence, the purpose of this research was 

to recover amorphous silica from rice husk through thermal treatment in fluidised 

bed system. Experimental works were conducted in fluidised bed combustor systems  

to determine the optimum mixing parameters (sand size, fluidising velocity, static 

bed height) and combustion parameters (temperature, air supply, rice husk moisture 

content, feeding design) to produce amorphous, carbon-free silica from rice husk. 

The fly and bottom ashes were analysed for their residual carbon contents and silica 

structures through loss on ignition (LOI) tests and X-Ray Diffraction (XRD) 

analyses, respectively. Computational fluid dynamics (CFD) modelling using 

FLUENT was also conducted to optimise the fluidised bed design and to overcome 

problems encountered in experimental works. Experimental results showed that 

amorphous, siliceous ash with residual carbon content of down to 1.0 wt% could be 

obtained by burning water-washed rice husk that was free from alkali metal 

compounds (potassium oxide and sodium oxide). The short freeboard height of the 

experimental fluidised bed resulted in the incomplete oxidation of carbon and sand 

contamination in the ash. Modelling results showed that both problems could be 

overcome by increasing the height of the fluidised bed to 5000mm. In addition, the 

induction of swirling flows at the freeboard region was found to be beneficial in 

increasing the residence time of ash in the combustor, leading to higher carbon 

burnout.
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ABSTRAK 

 

 

 

 Penyediaan silika amorfus (SiO2) secara konvensional menggunakan banyak 

tenaga dan sangat mahal. Silika amorfus mempunyai penggunaan meluas di industri, 

dengan kadar penggunaannya di seluruh dunia melebihi 1 juta tan setahun dinilaikan 

pada RM4,500 per tan. Abu sekam padi mengandungi silika amorfus melebihi 95%. 

Rawatan haba ke atas sekam padi (dihasilkan pada kira-kira 0.5 juta tan setahun di 

Malaysia) adalah kaedah paling ekonomik untuk memperolehi silika amorfus. Oleh 

itu, matlamat penyelidikan ini adalah untuk mendapatkan silika amorfus daripada 

sekam padi melalui rawatan haba dalam lapisan terbendalir. Kerja eksperimen 

dilaksanakan dalam pembakar lapisan terbendalir untuk menentukan parameter 

percampuran (saiz pasir, halaju perbendaliran, ketinggian lapisan terbendalir) dan 

parameter pembakaran (suhu, bekalan udara, kelembapan sekam padi, rekabentuk 

sistem penyuapan) optimum bagi menghasilkan silika amorfus dan bebas karbon 

daripada sekam padi. Abu terbang dan abu bawahan dianalisis untuk menentukan 

baki karbon dan struktur silika masing-masing melalui analisis kehilangan jisim dan 

analisis belauan sinar-x. Permodelan pengiraan dinamik bendalir menggunakan kod 

program FLUENT juga dilaksanakan untuk pengoptimuman rekabentuk pembakar 

serta mengatasi masalah operasi semasa kerja eksperimen. Keputusan eksperimen 

menunjukkan abu sekam padi amorfus dengan kandungan karbon sisa serendah 

1.0% dapat diperolehi dengan membakar sekam padi yang telah dibasuh dengan air 

(bebas dari sebatian logam alkali iaitu kalium oksida dan natrium oksida). 

Ketinggian pembakar yang tidak mencukupi menyebabkan pengoksidaan karbon 

tidak lengkap serta pencemaran pasir dalam abu terbang. Keputusan permodelan 

komputer menunjukkan masalah ini dapat diatasi dengan menambahkan ketinggian 

pembakar ke 5000mm. Penghasilan aliran pusaran di bahagian atas pembakar juga 

didapati berfaedah untuk meningkatkan masa mastautin abu di dalam pembakar, dan 

seterusnya menyebabkan kadar pengoksidaan karbon yang lebih tinggi. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

The purpose of this research was to produce amorphous silica fom rice husk 

through thermal treatment using the fluidised bed technology. Rice husk ash 

contains among the highest amount of biogenic silica still in its amorphous form (in 

the excess of 95 wt% silica, SiO2) (Kaupp, 1984; Kapur, 1985; James and Rao, 

1986) compared to other biomass materials, such as ash from sugarcane bagasse (57 

– 73% SiO2) (Jenkins et al., 1996; Natarajan et al., 1998b; Stephens et al., 2003). In 

addition, the percentage of ash in rice husk is many times higher (at 13 – 25 wt%, 

dry basis) (Jenkins et al., 1998; Natarajan et al., 1998b; Armesto et al., 2002) 

compared to that of sugarcane bagasse (at only 1.9 – 6.8 wt%, dry basis) (Jenkins et 

al., 1998; Natarajan et al., 1998b; Das et al., 2004). Further, it was reported that such 

a high percentage of silica is very unusual within nature and that no other plant 

waste even approaches the amount of silica found in rice husk (Beagle, 1974). The 

recovery of amorphous silica from rice husk is deemed the most economical source 

of silica due to the presence of abundant source of rice husk around the country, 

with annual generation rate of approximately 0.5 million tonnes (in the year 2003, 

Department of Statistics Malaysia). Rice husk has a high calorific value, which at 

approximately 13 MJ/kg is sufficient to promote sustainable combustion process, 

thus reducing the cost of fuel required for the conversion process. This is in contrast 

with the conventional preparation methods which are either energy-intensive 

(vapour-phase reaction and thermal decomposition technique) or involves high raw 
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material costs (alkaline extraction method), all of which result in high production 

costs. 

 

 

 

1.2 Benefits of Research 

 

1.2.1 Amorphous Silica 

 

Silica or silicon dioxide (SiO2) exists in two forms, amorphous and 

crystalline. Processing of silica of specific quality results in several types of 

specialty silicas, such as colloidal silica, fumed silica, fused silica, high-purity 

ground silica, silica gel and precipitated silica (McDonald, 1991). The global 

demand for specialty silicas is growing at an annual rate of 3% with revenue 

generation of more than RM 9.5 billion (USD 2.5 billion) (MineSet Partners LLC, 

2004). Currently, the Asia Pacific region is the leading consumer in specialty silica 

with demand exceeding RM 3 billion (USD 800 million) in 2003 (MineSet Partners 

LLC, 2004).  

 

Among these specialty silicas, silica in its amorphous form has wider 

industrial applications (as high-purity ground silica and fumed silica) since 

crystalline silica is carcinogenic to humans and is categorised as an IARC 

(International Agency for Research on Cancer) Group 1 agent, whereby its exposure 

could lead to the risk of silicosis. Amorphous silica is used mainly in specialty 

coatings, plastics, rubber, electronics, abrasives, refractories and optics (McDonald, 

1991). It is also a much sought after raw material for the synthesis of various fine 

chemicals (sodium silicate, zeolite catalysts, aerogel, very pure silicon, silicon 

nitride, silicon carbide and magnesium silicide). Since 1997, the world consumption 

of amorphous silica is estimated to be in the excess of 1 million tonnes per annum 

valued at approximately RM 4,500 per tonne (Chemlink Pty Ltd., 1997). The price 

of amorphous silica is highly dependent on its grade (particle size and level of 

impurities) and could range from RM 440 (USD 120; coarse, impure form) to                 

RM 21,000 (USD 5,500; ultra-fine, highly pure form) (McDonald, 1991). By 

processing into higher end products such as sodium silicate, its economic value is 
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further elevated. For example, the production of one tonne of sodium silicate 

requires approximately 135 kg of amorphous silica as raw material. Thus, one tonne 

of amorphous silica will produce an equivalent of 7.4 tonnes of sodium silicate, 

which in turn commands a price of RM 2,100 per tonne (USD 550 per tonne; 

Chemical Market Reporter, 1999). Sodium silicate is then used for the synthesis of 

nano-chemicals such as aerogel, with selling price of up to RM 19 million per tonne 

(USD 500 per 100 g; The Star, 2003). 

 

 Conventional methods for preparation of amorphous silica requires the use of 

high temperature (in the excess of 1500oC) and pressure for extracting silicon in 

pure form from natural deposits of quartzite rock or quartz sand, such as through the 

thermal decomposition technique and vapour-phase reaction (Tanner et al., 2000; 

Wu et al., 2000; Sadasivan et al., 1998, Bogush et al., 1988 and Dielt et al., 1981). 

Quartz sand is used as the raw material as it is the second most common mineral on 

earth, therefore making it the most common form of crystalline silica. Another 

preparation method is the sol-gel process but it involves high raw materials cost 

(Tomozawa et al., 2001). Such preparation methods results in extremely high 

production costs, which is subsequently reflected in its high market price. 

 

 Rice husk is found to contain amorphous silica in the range of 20 – 25 wt% 

(Hamad, 1981 – 1982; Hanna et al., 1984; Patel et al., 1987; Nakata et al., 1989; 

Real et al., 1996; Liou, 2004), which upon thermal degradation yields an ash product 

with an excess of 95 wt% silica. In addition, rice husk is a form of waste from the 

rice milling industries and is produced in abundance around the country. The 

amorphous nature of silica in rice husk makes it extractable at a lower temperature 

range (Kalapathy et al., 2002) and hence, thermal treatment of rice husk to produce 

amorphous silica is viewed as a more economical process having the potential to 

replace the conventional high temperature processes. This is because thermal 

treatment of rice husk actually produces energy instead of consuming energy. The 

energy produced could be recovered in the form of heat or electricity. 
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1.2.2 Rice Husk as Silica Source 

 

The presence of silica in rice husk has been discovered as far back as 1938 

(Martin, 1938; Chandrasekhar et al., 2003) while its recovery potential had been 

realised since 1984 (Kaupp, 1984). It is considered a good source of silica having 

the potential for large-scale production due to the following reasons:- 

 

a) High Silica Content with Amorphous Characteristic 

Rice husk contains silica in the range of 20 – 25 wt% (Real et al., 1996; Patel et al., 

1987, Conradt et al., 1992 and Chouhan et al., 2000). The silica (SiO2) in rice husk 

exists in the hydrated amorphous form like silica gel. Thermal degradation and 

pyrolysis of rice husk, followed by combustion of the char, result in a highly porous 

and amorphous silica particulate mass with a varying percentage of unburnt carbon 

(Kapur, 1985). Combusted at moderate temperature, the white ash obtained from 

rice husk contains approximately 92 – 97 wt% amorphous silica (Mishra et al., 1985 

and Chakraverty et al., 1988) and some amount of metallic impurities that can be 

further removed by a simple acid-leaching treatment. Other studies consistently 

reported that rice husk ash contains very high silica content such as Armesto et al. 

(2002) (87.7 wt% as SiO2), Liou (2004) (>90 wt% silica), Kapur (1985) (>95 wt% 

silica) and Houston (1972) (87 – 97 wt% silica). 

 

b) Abundant and Cheap Source of Silica 

Rice is cultivated in more than 75 countries (Natarajan et al., 1998a) and over 97% 

of rice husk are generated in developing countries (Armesto et al., 2002). Rice husk 

accounted for 14 – 35 wt% of the paddy harvested, depending on the variety, with an 

average of 20 wt% (Jenkins, 1989 and Mahin, 1986). Thus, worldwide annual husk 

output is estimated at 80 million tonnes (Kapur, 1985).  

 

Closer to home, the annual paddy output in Malaysia, up to 2003, was 2.26 million 

tonnes (Department of Statistics Malaysia) and considering rice husk accounted for 

22% of this value, the amount of rice husk generated was approximately 0.5 million 

tonnes per annum. Rice husk is considered as a form of waste from rice milling 

processes and are often left to rot slowly in the field or burnt in the open. Although a 
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small portion of the rice husk is used as a component in animal beddings, the fact 

that it is a cheap and abundant source of silica remains largely unrealised. To some 

extent, rice husk has been utilised as fuel for cooking and parboiling of paddy rice in 

some developing country, but it is neither fully nor efficiently utilised. Such under-

utilisation clearly shows the wastage and loss of resources which in reality could 

generate revenue through the recovery of silica via methods such as combustion. 

 

Kaupp (1984) noted that the ash content of approximately 20 wt% in rice husk 

(which comprise of over 95 wt% silica) would make rice husk utilisation systems 

become very economically attractive. According to Kapur (1985), when rice husk is 

burnt under controlled conditions, the resulting ash is easily the cheapest bulk source 

of highly reactive silica with a BET (Brunauer, Emmett and Teller method) surface 

area which can be as high as 80 m2/g or more. Further, since the ash is obtained as a 

fine powder, it does not require further grinding (James and Rao, 1986) and thus, 

making it the most economical source of nanoscale silica (Liou, 2004). 

 

c) Quality of Silica Comparable with Other Expensive Sources of Silica 

As reviewed by Real et al. (1996), a number of published literatures (such as Mishra 

et al., 1985; Chakraverty et al., 1988; and James and Rao, 1986) had concluded that 

rice husk are an excellent source of high-grade amorphous silica. The silica obtained 

from rice husk ash is a good material for synthesis of very pure silicon (Amick et al., 

1980; Amick, 1982 and Hunt et al., 1984), silicon nitride (Real et al., 1996; Yalçin 

and Sevinç, 2001), silicon carbide (Krishnarao and Subrahmahyam, 1995; Gorthy 

and Pudukottah, 1999) and magnesium silicide (Ghosh et al., 1991). In addition, this 

silica has been claimed (Amick, 1982; Chakraverty et al., 1985; and Hunt et al., 

1984) to be an excellent source of very pure silicon, useful for manufacturing solar 

cells for photovoltaic power generation and semiconductors. In the manufacture of 

silicon carbide from rice husk silica, the processing temperature could be lowered to 

1500oC due to the high surface area and intimate contact available from carbon and 

silica in rice husk. This is considered to be less energy-intensive compared to 

conventional methods using coal and quartz sand in electric furnaces (Hanna et al., 

1984), whereby the processing temperatures are in the order of 2500oC. With silica 

content in the excess of 95 wt%, rice husk ash can also be used as a substitute for 

silica in cement manufacture. Preliminary study conducted by Ajiwe et al. (2000) 
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showed that the produced cement had similar standard compared to commercial 

cement.  

 

d) Disposal Problem 

The current practices to dispose of the large quantities of rice husk through open 

burning or rotting in field are not environmental-friendly. Open burning results in air 

pollution with the formation of smoke and particulate matters in the form of char 

and ash. Rotting in field, on the other hand, results in formation of methane (CH4), 

which is a potent greenhouse gas. Combustion of biomass such as rice husk can 

actually reduce the greenhouse effect by converting emissions that would have been 

methane into the less potent greenhouse gas carbon dioxide. Since CH4 is some 25 

times more potent as a greenhouse gas than carbon dioxide (CO2), and since the two 

gases have similar atmospheric residence times, trading off CH4 emissions for CO2 

emissions from combustion leads to a large net reduction of the greenhouse effect 

associated with the disposal of rice husk. Rotting in the field leads to a slow decay of 

the material, with eventual emissions of approximately equal amount of CH4 and 

CO2 from the carbon that is released during the decay (Morris et al., 1991). 

 

e) High Energy Content 

Rice husk has an average lower heating value (LHV) of 13 – 16 MJ/kg (Jenkins, 

1989; Mahin, 1986 and Kapur, 1985). Comparisons by Natarajan et al. (1998a) 

indicated that the LHV of rice husk is about one-third that of furnace oil, one-half 

that of good quality coal and comparable with sawdust, lignite and peat. It was also 

reported that the world annual energy potential of rice husk is 1.2 × 109 GJ, with a 

corresponding heating value of 15 MJ/kg. Thus, rice husk is a good renewable 

energy source.  Apart from solving its disposal problems, combustion offers the 

potential for energy recovery from this waste. 

 

In Malaysia, with a reported annual generation rate of rice husk at 0.424 million 

tonnes in the year 2000, the potential energy generation from rice mills is 263 GWh 

per annum. This translates to a potential capacity of 30 MW (National Energy 

Balance Malaysia Year 2000 Report). The pressure to search for renewable energy 

sources is mounting due to the depletion of fossil fuels and the rapid increase in 
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energy demand, from 25,558 toe (tonne of oil equivalent or equivalent to 42 GJ of 

lower heating value) in 1998 to 31,515 toe in 2001 (National Energy Balance 

Malaysia Reports for Year 1998 and 2001). In the Eighth Malaysia Plan (2001 – 

2005), the Government replaces the Four-Fuel Diversification Policy with the new 

Five-Fuel Diversification Policy, which adds renewable energy as a potential source 

alongside existing four fuels utilised for power generation (oil, gas, coal and hydro). 

The renewable energy focus is on biomass and the target contribution towards the 

total electricity generation mix is 5% by 2005 and 10% by 2010. Utilising only 5% 

of renewable energy could save the country RM5 billion over five years (NSTP, 29th 

June 2002).  

 

The use of rice husk as renewable energy has already been practised in Malaysia, 

whereby Bernas and a private rice miller operate a few small (< 1 MW) rice husk 

cogeneration plants to produce electricity and steam for paddy drying. As shown in 

Figure 1-1, milling of 1 tonne of paddy produces about 220 kg of rice husk or 

equivalent to approximately 150 kWh of potential power. In the year 1997, a Full-

Scale Demonstration Project (FSDP) under COGEN 3 using rice husk as fuel had 

been implemented in Ban Heng Bee Rice Mill (1952) Sdn. Bhd. with the 

commissioning of its 450 kW rice husk-fired cogeneration plant. COGEN 3 is the 

third phase of the EC-ASEAN cooperation programme initiated by the European 

Commission (EC) and the Association of South-East Asian Nations (ASEAN).  It is 

financed by the European Commission.  COGEN 3 accelerates the implementation 

of proven, clean and efficient cogeneration projects using biomass, coal or gas as 

fuel.  The projects are implemented through partnerships between ASEAN industrial 

companies and European equipment suppliers. 

 



8 

 

 
Source: EC-ASEAN COGEN Programme 

Figure 1-1: Power generation potential from rice husk mills 

 

 

 

1.2.3 Market Review for Amorphous Silica from Rice Husk Ash 

 

Currently, the two major commercial applications for amorphous silica from 

rice husk ash (RHA) are as pozzolan in the cement industry and for manufacture of 

sodium silicate in the fine chemicals industry. It can also be used in the steel 

industry as insulator during the steel casting process. However, since it will 

transform into crystalline form at the end of the steel making process due to 

prolonged heating at high temperatures (i.e. 1500oC for 4 hours), it is more 

economically-feasible to use crystalline rice husk ash for such purpose since the 

price of amorphous ash is higher compared to crystalline ash. The market for 

crystalline ash (up to 1.0 wt% crystals, carbon content 2.5 – 5.0 wt%) in the steel 

industry is well-established, with an average price of RM 570 per tonne (USD 150 

per tonne) (Bronzeoak, 2003). 

 

a) Cement Industry 

Amorphous RHA has been widely researched as mineral cement replacement 

material (MCRM). The two main research areas for the utilisation of RHA in the 

cement industry are in the manufacture of low cost building blocks and in the 

production of high quality cement. Traditionally, silica fume, which is a byproduct 

 Process energy required:
Paddy milling and drying: 30-60 kWh/tonne paddy

1 tonne of
paddy

650-700 kg
white rice

Waste:
220 kg husks ~ 150 kWh power 

(heat and power)  
per tonne of paddy 
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of metallurgical industry, is used for exactly the same purpose but its supply is 

becoming limited and expensive for developing economies. The current price of 

silica fume is reported to be RM 4,560 per tonne (USD 1,200 per tonne) in India 

(Torftech News, 24th November 2003).  

 

Research such as that conducted at FEUP (Faculdade de Engenharia, Universidade 

do Porto or Faculty of Engineering of University of Porto) in Portugal had shown 

that RHA concrete performed better than silica fume concrete. Further, studies by 

Nehdi et al. (2003) showed that depending on the addition rate, RHA increased the 

compressive strength of concrete by up to 40% at 56 days and was thus deemed 

superior compared to silica fume. They also concluded that the performance of RHA 

in reducing the rapid chloride penetrability of concrete was comparable to silica 

fume and was slightly more efficient than silica fume in resisting surface scaling due 

to deicing salts. Preliminary studies conducted by Ajiwe et al. (2000) also showed 

that RHA-formulated cement (RHA substitution of 24.5 wt%, based on the analysis 

by Bogue (1989) that the theoretical percentage fraction of silica in tricalcium 

silicate or Portland cement was 26.3 wt%) had similar standard in terms of its 

compressive strength and setting time compared to commercial cement. 

 

The market of RHA for cement industry is not as well-developed as steel, but there 

is a great potential due to the pozzolanic properties of RHA that are comparable to 

cement. The potential is also driven by the absence of any health issues associated 

with the use of crystalline ash (as in the steel industry) due to the use of amorphous 

ash. In the United States of America, RHA has already been used commercially by 

Pittsburg Mineral & Environmental Tech. Inc. (PMET) which is part of Alchemix 

Corporation, Arizona, as a substitute for silica fume in the production of specialist 

concrete. PMET specifies that the RHA for use as substitute for silica fume should 

contain less than 1% of crystalline silica (>99% amorphous), carbon content less 

than 6% and mean particle size of 7 – 9 μm (passing 45 μm sieve). The current 

market prices for RHA sold to the cement industry were shown in Table 1-1. The 

price could reach as high as RM 2,280 per tonne (USD 600 per tonne) for high 

quality amorphous RHA with more than 85% silica content. 
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Table 1-1: Market prices for amorphous rice husk ash for use in cement 

industry 

Price (per tonne) 
No. Source/Reference 

RM USD 
Remarks 

1 Torftech Application 
Description (August 2002) 1,140 300 - 

2 The Hindu Newspaper (19th 
January 2003) 

1,900 – 
2,280 500 – 600 

Price for super pozzolana 
(RHA containing high silica 
content in the excess of 85%) 

 

b) Fine Chemicals Industry 

The emerging use of amorphous RHA is for the manufacture of water glass (sodium 

silicate or Na2SiO3), which in turn is an intermediate raw material for synthesis of a 

wide array of fine chemicals. The current market price for water glass is RM 2,100 

per tonne (USD 550 per tonne, Chemical Market Reporter, 18th January 1999). 

 

The conventional process of manufacturing sodium silicate is through the fusion of 

silica sand with high-purity soda ash in furnaces at high temperatures (1300 – 

1500oC), forming water glass (a solid) which is then crushed and dissolved in water 

and digested under pressure with steam. According to Stephens et al. (2003), the 

production of water glass through this route formed the foundation of all commercial 

processes for making sodium or other soluble silicate solutions today. Both the high-

temperature fusion and high-temperature and pressure digestion processes are very 

energy-intensive, thus very expensive. In addition, the silicates produced generally 

contain metal contaminants found in the earth in amounts ranging from 400 to 

10,000 ppm.  

 

The potential for obtaining this expensive sodium silicate solution through the 

relatively less costly process of caustic digestion of RHA had been reported by 

Stephens et al. (2003). In their patent (U.S. Patent No. 6,638,354) describing the 

synthesis of precipitated silicas and silica gels (with and without deposited carbon), 

the sodium silicate solution required for the synthesis was obtained from digestion 

of amorphous RHA in a caustic solution of sodium hydroxide. Maintaining the 

amorphous structure in the RHA is important for its use in the synthesis of 

chemicals as the silica maintains a porous skeletal structure which provides better 

chemical reactivity and solubility, especially during operations such as caustic 




