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BOUNDARY LAYER FLOW DUE TO A MOVING FLAT PLATE
IN MICROPOLAR FLUID

MOHD ZUKI SALLEH1, AZIZAH MOHD ROHNI2 & NORSARAHAIDA AMIN3

Abstract. The mathematical model for a boundary layer flow due to a moving flat plate in
micropolar fluid is discussed. The plate is moving continuously in the positive x-direction with a
constant velocity. The governing boundary-layer equations are solved numerically using an implicit
finite-difference scheme. Numerical results presented include the reduced velocity profiles, gyration
component profiles and the development of wall shear stress. The results obtained, when the
material parameter K = 0 (Newtonian fluid) showed excellent agreement with those for viscous
fluids. Further, the wall shear stress increases with increasing K. For fixed K, the wall shear
stress decreases and the gyration component increases with increasing values of n, in the range
0 ≤ n ≤ 1 where n is a ratio of the gyration vector component and the fluid shear stress at the wall.

Keywords: Boundary layer, micropolar fluid, moving flat plate, Keller-box method, mathematical
model

Abstrak. Pemodelan matematik bagi aliran lapisan sempadan terhadap plat rata bergerak
telah dibincangkan. Satu plat bergerak berterusan dalam arah positif paksi-x dengan halaju tetap.
Persamaan lapisan sempadan yang dihasilkan telah diselesaikan secara berangka dengan
menggunakan skema beza terhingga tersirat. Keputusan berangka telah diberikan, ini termasuk
profil halaju, profile komponen legaran dan perubahan tegasan ricih permukaan. Kajian ini
menunjukkan bahawa keputusan bagi masalah dalam bendalir mikropolar berbanding dengan
bendalir likat adalah sangat memuaskan apabila parameter bahan K = 0 (bendalir Newtonan).
Seterusnya tegasan ricih permukaan meningkat dengan peningkatan nilai K. Untuk nilai K yang
ditetapkan, didapati tegasan ricih permukaan menyusut dan kompenan legaran meningkat dengan
peningkatan nilai n, dalam selang 0 ≤ n ≤ 1, di mana n adalah nisbah kompenan vektor legaran
dengan tegasan ricih bendalir pada permukaan.

Kata kunci: Lapisan sempadan, bendalir mikropolar, plat rata bergerak, kaedah Keller-box,
pemodelan matematik
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1.0 INTRODUCTION

The boundary-layer flow over a moving continuous solid surface is important in
several engineering processes. For example, materials manufactured by extrusion
processes and heat-treated materials travelling between a feed roll and a wind-up
roll or on conveyor belt possess the characteristics of a moving continuous surface.
Sakiadis [1] first investigated the boundary-layer flow on a continuous solid surface
moving at constant speed. Due to the entrainment of the ambient fluid, this boundary-
layer flow is quite different from the Blasius flow past a flat plate. Sakiadis’ theoretical
predictions for Newtonian fluids were later corroborated experimentally by Tsou
et al. [2]. Lee and Davis [3] investigated the laminar boundary layers on moving
continuous surfaces while the turbulent boundary layer on a moving continuous
plate was studied by Noor Afzal [4].

This paper will investigate the boundary layer flow due to a moving flat plate in
both viscous and micropolar fluids. A micropolar fluid is one which contains
suspensions of rigid particles such as blood, liquid crystals, dirty oil and certain
colloidal fluids, which exhibits microstructure. The theory of such fluids was first
formulated by Eringen [5]. The equations governing the flow of a micropolar fluid
involve a microrotation vector and a gyration parameter in addition to the classical
velocity vector field. This theory includes the effects of local rotary inertia and couple
stresses and is expected to provide a mathematical model for the non-Newtonian
behavior observed in certain man-made liquids such as polymeric fluids and in
naturally occurring liquids such as animal blood. The theory of thermomicropolar
fluids was also developed by Eringen [6] by extending the theory of micropolar
fluids. A comprehensive review of micropolar fluid mechanics was given by Ariman
et al. [7]. Their studies on the inadequacy of the classical Navier-Stokes theory to
describe rheologically complex fluids such as liquid crystals, animal blood, etc., has
led to the development of microcontinuum fluid mechanics as an extension of the
classical theory. Many models have been proposed to take into account the
mechanically significant microstructure of such fluids. Rees and Bassom [8] have
considered the Blasius boundary layer flow of a micropolar fluid over a flat plate,
while a similarity analysis of the flow and heat transfer past a continuously moving
semi-infinite plane in micropolar fluid has been presented by Soundalgekar and
Takhar [9].

This paper will also consider the problems of the boundary-layer flow. We derive
and solve the full boundary layer equations. The analyses involve the pseudo-similarity
transformation of the governing equations and the resulting nonlinear equations are
then solved using an implicit finite difference scheme, the Keller-box method. The
reduced velocity, reduced gyration component and development of wall shear stress
are shown by means of graphs.
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2.0 GOVERNING EQUATIONS

Consider the flow of a steady, laminar, incompressible micropolar fluid past an
extensible sheet, which is moving continuously in the positive x – direction with an
arbitrary surface velocity U. The orthogonal coordinates x , y  are measured along
the sheet and, respectively, normal to it with the origin at a fixed point 0.

The full equations governing the two-dimensional steady flow of a micropolar
fluid are (Ahmadi [10]):

0
u v
x y

∂ ∂+ =
∂ ∂

(1)

2 2

2 2

1u u p u u N
u v

x y x x y y
κ κµ

ρ ρ ρ
 ∂ ∂ ∂ ∂ ∂ ∂ + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂  

(2)

2 2

2 2

1v v p v v N
u v

x y x x y y
κ κµ

ρ ρ ρ
 ∂ ∂ ∂ ∂ ∂ ∂ + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂  

(3)

2 2

2 22
N N u v N N

u v N
x y y x x y

κ κ γ
ρζ ρζ ρζ

 ∂ ∂ ∂ ∂ ∂ ∂ + = − + + + + +  ∂ ∂ ∂ ∂ ∂ ∂   
(4)

Following Ahmadi [10], ( x , y ) are the coordinates parallel with and perpendicular
to the flat surface, (u ,v ) is the velocity vector, p  is the pressure, N  is the component
of the gyration vector normal to the x – y plane, and ζ  is the microinertia density.
Further, ρ is the fluid density, µ  is the viscosity, κ  is the microrotation parameter
(also known as the coefficient of gyroviscosity or as the vortex viscosity) and γ  is the
spin-gradient viscosity. We follow the work of many recent authors by assuming that
ζ  is a constant. The Equations (1), (2), (3) and (4) are to be solved subject to:

0 on 0
u

v , u U , N n y
y

∂→ = = − =
∂ (5a)

0 0 0 asu , v , N y→ → → → ∞  (5b)

In Equation (5a) we have followed Arafa and Gorla [11] in assigning a variable
relation between N  and the skin friction at the surface. The value n = 0, represents
concentrated particle flows in which the microelements close to the wall are unable

to rotate. The value 
1
2

n =  is indicative of weak concentration, and when n = 1, is

used for the modeling of turbulent boundary layer. We shall consider values of n

which lie between these two extremes.
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We introduce now the nondimensional variables:

2

1yx u v p
x , y ,u ,v , p ,N N

l l U U U Uρ
 = = = = = =   

(6)

and follow Ahmadi [10] to assume that γ  is given by,

2
,

κγ µ ζ = +  
(7)

We obtain from Equations (1) – (4) the following:

0
u v
x y

∂ ∂+ =
∂ ∂

(8)

2 2

2 2

1 K K
Re Re

u u p u u N
u v

x y x x y y
 ∂ ∂ ∂ + ∂ ∂ ∂ + = − + + +  ∂ ∂ ∂   ∂ ∂ ∂ 

 (9)

2 2

2 2

1 K K
Re Re

v v p v v N
u v

x y y x y x

 ∂ ∂ ∂ + ∂ ∂ ∂ + = − + + −  ∂ ∂ ∂   ∂ ∂ ∂ 
 (10)

2 2

2 2

K
1K K 22

Re
N N l u l N N N

u v N
x y U y U x x yρζ ρζ

 +  ∂ ∂ ∂ ∂ ∂ ∂ + = − + − + +   ∂ ∂ ∂ ∂   ∂ ∂   
(11)

where K is the material parameter defined by K
κ
µ

=  and Re is the Reynolds number

defined by Re
Ul
v

= . If we take 2lζ =  as a reference length scale for ζ, then (11)

becomes:

2 2

2 2

K
1K K 22

Re Re Re
N N u N N N

u v N
x y y x x y

 +  ∂ ∂ ∂ ∂ ∂ ∂ + = − + − + +   ∂ ∂ ∂ ∂   ∂ ∂   
(12)

The boundary conditions (5) become:

0 1 on 0
du

v , u , N n y
dy

→ = = − = (13a)

0 0 0 asu , v , N y→ → → → ∞ (13b)
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Now we introduce the boundary layer variables:
1 1 1
2 2 2Re Re ReX x, Y y, U u, V v, N N= = = = = (14)

into Equations (8), (9), (10) and (12) to obtain:

0
U V
X Y

∂ ∂+ =
∂ ∂

(15)

2 2

2 2

1
(1+ K) K

Re
U U p U U N

U V
X Y X X Y Y

 ∂ ∂ ∂ ∂ ∂ ∂+ = − + + + ∂ ∂ ∂ ∂ ∂ ∂ 
 (16)

2 2

2 2 2 2

1 1 1 K
(1+ K)

Re Re Re Re
V V p V V N

U
X Y Y X Y X

 ∂ ∂ ∂ ∂ ∂ ∂ + = − + + −   ∂ ∂ ∂ ∂ ∂ ∂   
(17)

 

1 1 3
2 2 2

1 2 2
2

2 2

Re K Re 2 K Re

K 1
1 Re

2 Re

N N U N
U V N

X Y Y X

N N
X Y

− − −

−

∂ ∂ ∂ ∂   + = − + −   ∂ ∂ ∂ ∂   
 ∂ ∂ + + +     ∂ ∂ 

(18)

Taking Re → ∞ as boundary layer approximation, we have:

0
U V
X Y

∂ ∂+ =
∂ ∂

(19)

( )
2

21 K K
U U p U N

U V
X Y X Y Y

∂ ∂ ∂ ∂ ∂+ = − + + +
∂ ∂ ∂ ∂ ∂

 (20)

0
p
Y

∂= −
∂ (21)

2

2

K
K 2 1

2
N N U N

U V N
X Y Y Y

∂ ∂ ∂ ∂   + = − + + +  ∂ ∂ ∂   ∂ 
(22)

The boundary conditions (13) reduce to:

0 1 on 0
U

V , U , N n Y
Y

∂= = = − =
∂ (23a)

0 0 asU , N Y= → → ∞ (23b)

Equation (21) shows that p = p(x) and Equation (20), on applying the boundary
condition (23b), gives:
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0
p
X

∂ =
∂

Finally, we have the following boundary layer equations for the problem under
consideration:

0
U V
X Y

∂ ∂+ =
∂ ∂ (24)

( )
2

21 K
U U U N

U V K
X Y Y Y

∂ ∂ ∂ ∂+ = + +
∂ ∂ ∂ ∂

(25)

2

21 2N+
2

N N K N U
U V K

X Y Y Y
∂ ∂ ∂ ∂   + = + −   ∂ ∂   ∂ ∂ 

(26)

subject to the boundary conditions

0 1 on 0
U

V , U , N n Y
Y

∂= = = − =
∂

0 0 asU , N Y= → → ∞  (27)

we define the reduced stream function, f, the reduced gyration component, g, and
the pseudo-similarity variable, η as:

( ) ( )
1 1 1
2 2 2f X , X , g X , X N , X Yη ψ η η− −= = =  (28)

where ψ is the stream function which satisfies:

U , V
Y X
ψ ψ∂ ∂= = −

∂ ∂ (29)

When the stream function ψ is introduced, the continuity Equation (24) is
automatically satisfied. We obtain from (25) and (26):

( )
3 2 2 2

3 2 2

1
1 K K

2
f f f f f fg

f X
X Xη η η η η η

 ∂ ∂ ∂ ∂ ∂ ∂∂+ + + = − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
(30)

22

2 2

K 1
1 K 2

2 2

f fg g
f g X g

f fg g
X

X X

η η η η

η η

 ∂ ∂∂ ∂  + + + = +      ∂ ∂ ∂ ∂   
∂ ∂∂ ∂ + − ∂ ∂ ∂ ∂ 

(31)
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with the boundary conditions

2

20 1 on 0
f f

f , , g n η
η η

∂ ∂
= = = − =

∂ ∂ (32a)

0 0 as
f

, g .η
η

∂ → → → ∞
∂ (32b)

Thus we have derived a set of parabolic partial differential equations which govern
the development of the boundary layer, which in general, requires numerical
solution.

Before presenting the computed results, it is convenient to draw attention to two
cases for which Equations (30), (31) and boundary conditions (32) admit similarity

solutions [8]. Similarity solution arises when 
1
2

n = . We can take:

( ) ( ) ( )0 0and 0f X , f g X , gη η η= = =

where f0 and g0 are obtained from (30) and (31) as:

( )
0 0 0 0

1
1 K K 0

2
''' " 'f f f g+ + + =  (33)

0 0

1
2

''g f= −  (34)

If we substitute Equation (34) into (33), we get:

0 0 0

K 1
1 0

2 2
' ''f f f + + =     (35)

subject to:

( ) ( )

( )
0 0

0

0 0 0 1 on 0

0 as

'

'

f , f

f

η
η

= = =

∞ → → ∞  (36)

Now we set:

( ) ( )
1 1
2 2

0 0

K K
1 1

2 2
f f ,η η η η

−
   = + = +      

 (37)

Hence that Equation (35) reduces to:

 0 0 0

1
0

2
''' ''f f f+ =  (38)
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subject to:

( ) ( )

( )
00

0

0 0 0 1 on 0

0 as

'

'

f , f

f

η

η

= = =

∞ = → ∞  (39)

Equations (38) and (39) describe the flow due to a moving flat plate in a quiescent
fluid first described by Sakiadis [1].

Following Rees and Bassom [8], a second similarity solution arises when K = 0 for
which

( ) ( ) ( ) ( )
( )1

2 0and 0
f s ds''f f g nf e

η

η η η
− ∫= = −  (40)

In this case, the flow field is unaffected by the microstructure of the fluid, and hence
the gyration component is a passive quantity.

3.0  NUMERICAL SOLUTION

The full pseudo-similar boundary layer Equations (30) and (31) subject to the
boundary conditions (32a, 32b) are solved numerically using the Keller-box method.
In this method, the governing equations are first reduced to first order equation.
We use the Newton’s method to linearize the resulting nonlinear equations and
lastly, we obtain the solutions using the block-elimination methods. In our present
study, we have used the step sizes of ∆η = 0.05 and ∆ξ = 0.05. In all cases we choose
xmax= 10, ξmax = 201 and ymax = 6, ηmax = 121. A solution is considered to converge
when the difference between the input and output values of the v(ξ,0) came within
10–10.

Table 1 presents the comparison of f, f ′ and f ′′ between the present method and
previously published data [1].

Figures (1) – (4) give some graphs of the characteristics of velocity profile f ′ and
reduced gyration component g as a function of η at different streamwise locations
for K = 1, K = 0.5 and 0 ≤ n ≤ 1. Figures (1) and (2) show that f ′(η ) decreases as
increases.

Figures (3) and (4) display some profiles of the reduced gyration component, g as
a function of η at various streamwise locations η with the parameter choice K = 1
and K = 0.5. Generally there is only a slight difference between these two figures.
When K = 1 the value of g at η = 1.0 is 0.530515 and when K = 0.5 the value of g at
η = 1.0 is 0.488204. On the other hand, the value of g at η = 0 when K = 1 and
K = 0.5 varies with n.

JTDIS43C[05].pmd 02/15/2007, 16:1274



BOUNDARY LAYER FLOW DUE TO A MOVING FLAT PLATE IN MICROPOLAR FLUID 75

Table 1 Comparison between Sakiadis [1] and the present method for the similar flow

eta(eta(eta(eta(eta(hhhhh ))))) fffff fffff ¢¢¢¢¢ fffff ¢¢¢¢¢¢¢¢¢¢

0.00 present 0.000000 1.000000 –0.443920
(Sakiadis) (0.00000) (1.00000) (–0.44375)

0.05 present 0.049445  0.977811 –0.443645
(Sakiadis) (0.04945) (0.97782) (–0.44347)

1.00 present 0.786152 0.587014 –0.358469
(Sakiadis) (0.78620) (0.58715) (–0.35831)

3.00 present 1.432201 0.143646 –0.109905
(Sakiadis) (1.43273) (0.14401) (–0.10984)

5.00 present 1.577469 0.029469 –0.023956
(Sakiadis) (1.57883) (0.02995) (–0.02392)

8.00 present 1.609876 0.002137 –0.002173
(Sakiadis) (1.61278) (0.00267) (–0.00216)

1

Figure 1 Profile of the reduced streamwise velocity f ′ as a function of η at different streamwise
location for K = 1  and for 0 ≤ n ≤ 1
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Figure 2 Profile of the reduced streamwise velocity f ′ as a function of η at different streamwise
location for K = 0.5 and for 0 ≤ n ≤ 1

Figure 3 Profile of the reduced gyration component g as a function of η at different streamwise
locations for K = 1 and for  0 ≤ n ≤ 1
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Figures (5) - (8) illustrate the variation of the shear stress (or skin friction) and the
rate of change of gyration component at the solid boundary with X. Figures (5)
and (6) plot f ′′ at η = 0 as a function of X for various values of K, and for n = 0 and

Figure 4 Profile of the reduced gyration component g as a function of η at different streamwise
locations for K = 0.5 and for  0 ≤ n ≤ 1

Figure 5 Development of the wall shear stress f ′′(X, 0) as a function of X for n = 0 and for various
values of K
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n = 0 . For fixed n, increasing value of f ′′ would seem to be associated with increasing
value of K and when K = 0 the curves are very approximately or closed to being
horizontal lines.

Figure 6 Development of the wall shear stress f ′′(X, 0) as a function of X for n = 1 and for various
values of K
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Figure 7 Development of the rate of change of the gyration component at the wall g′(X, 0) as a
function of X for η = 0 and for various values of K
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Figures (7) and (8) show the rate of change of the gyration component at the wall,
g′′(X, 0) for different values of K.

Figures (9) - (12) consider the development of the wall shear stress,  f ′′(X, 0)  and
the rate of change of the gyration component at the wall, g′(X, 0) with X. The figures

Figure 8 Development of the rate of change of the gyration component at the wall g′(X, 0) as a
function of X for η = 1 and for various values of K
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Figure 9 Development of the wall shear stress f ′′(X, 0) as a function of X for K = 0.5 and a range
of values of n
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present the corresponding graphs when K = 0.5 and K = 1 is taken, and n is varied

between 0 and 1. The similarity solution corresponding to 
1
2

n =  is evident as a

straight line in all these figures.

Figure 10 Development of the wall shear stress f ′′(X, 0) as a function of X for K = 1 and a range
of values of n
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Figure 11 Development of function g′(X, 0) as a function of X for K = 0.5 and a range of values
of n
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Figure 12 Development of function g′(X, 0) as a function of X for K = 1 and a range of values of
n
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4.0 CONCLUSION

The governing boundary layer equations are solved numerically using an implicit
finite difference scheme. Numerical results presented include the reduced velocity
profiles, gyration component profiles and the development of wall shear stress or
skin friction. These numerical results indicated that a near-wall contact layer develop

as X → ∞ but only if  
1
2

n ≠ . But, when either 
1
2

n =  or K = 0, the solution is self-
similar and there is no near-wall layer [8]. The results obtained, for the material
parameter K = 0 (Newtonian fluid), are in excellent agreement with those obtained
for viscous fluids. Further, the wall shear stress increases with increasing K. For fixed
K, the wall shear stress decreases and the gyration component increases with increasing
values of n, in the range 0 ≤ n ≤ 1 where n is a ratio of the gyration vector component
and the fluid shear stress at the wall.
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NOMENCLATURE

Roman Letters

f – Reduced stream function

f0 – Reduced stream function for 
1
2

n =

f – Reduced stream function for the classical Blasius boundary-layer flow

g – Reduced gyration component

g0 – Reduced gyration component for 
1
2

n =

ζ – Microinertia density

j0 – Reference value of the microinertia density

K – Ratio of the gyroviscosity and the fluid viscosity

l – Length scale

n – Ratio of the gyration vector component and the fluid shear at a solid
boundary

N – The gyration vector component perpendicular to the x-y plane

p – Pressure

Re – Reynolds number, oU lρ
µ

v – Fluid velocity component in y-direction

x – Coordinate along the plate

x – Dimensionless coordinate x

y – Coordinate normal to the plate

y – Dimensionless coordinate y
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X, Y – Nondimensional streamwise and cross-stream Cartesian coordinates

u – Dimensionless velocity u

u – Fluid velocity component in x-direction

U – Free stream velocity

v – Dimensionless velocity v

Greek Letters

δ – Boundary layer thickness

η – Pseudo-similarity variable

η – Scaled pseudo-similarity variable

γ – Spin-gradient viscosity

µ – Dynamic viscosity

κ – Coefficient of gyroviscosity

υ – Kinematic viscosity

ξ – Transformed streamwise coordinate

ρ – Density of the fluid

ψ – Stream function

θ – Momentum thickness

Superscripts

′ – Differentiation with respect to
– – Dimensional variables
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