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ABSTRACT

Most industrial fluids such as polymers, liquid crystals and colloids contain
suspensions of rigid particles that undergo rotation. However, the classical Navier-
Stokes theory normally associated with Newtonian fluids is inadequate to describe such
fluids as it does not take into account the effects of these microstructures. In this
research, the unsteady boundary layer forced and mixed convection of micropolar fluids
are considered where the unsteadiness is due to an impulsive motion of the free stream.
Both small and large time solutions as well as the occurrence of flow separation,
followed by flow reversal are taken into account. The two-dimensional flow along the
entire surface of a cylinder and a sphere is solved numerically using the Keller’s box
scheme in a three dimensional grid where the discretization is made either on a net cube,
or a zig-zag grid in the case of flow reversal. The numerical results show that as the
micropolar material parameter increases, the thickness of both velocity and
microrotation boundary layers, as well as the peak value of the skin friction coefficient
along the body surface, also increase. Meanwhile, the value of the Nusselt number, in
the case of micropolar fluids, is lower near the forward stagnation point and higher near
the rear stagnation point compared to Newtonian fluids. It is also found that the
separation time is brought forward in both cases of weak and strong concentration of
microelements in the assisting mixed convective flows. However, in the opposing case,
the separation time is delayed for a flow past a cylinder, while for a flow past a sphere,

only the weak concentration of microelements can give similar results.
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ABSTRAK

Kebanyakan bendalir industri seperti polimer, hablur cecair dan koloid
mengandungi ampaian zarah tegar yang mengalami putaran. Walaubagaimanapun, teori
klasik Navier-Stokes yang kebiasaannya dikaitkan dengan bendalir Newtonian adalah
tidak sesuai untuk menerangkan bendalir tadi memandangkan ia tidak mengambil kira
kesan mikroputaran. Dalam penyelidikan ini, kesan olakan paksaan dan olakan
campuran bagi bendalir mikropolar dipertimbangkan di mana aspek ketidakmantapan
aliran adalah disebabkan oleh gerakan dedenyut arus bebas. Kedua-dua penyelesaian
bagi nilai masa yang kecil dan nilai masa yang besar serta kejadian pemisahan aliran
yang diikuti dengan aliran menentang diberi perhatian. Aliran di sepanjang permukaan
silinder dan sfera ini diselesaikan secara berangka menggunakan skim kotak Keller
dalam tiga matra di mana pendiskretan dilakukan pada grid berbentuk kiub atau
berbentuk zig-zag bagi aliran menentang. Penyelesaian berangka yang diperolehi
menunjukkan ketebalan lapisan sempadan bagi kedua-dua halaju dan mikroputaran serta
nilai puncak bagi tegasan ricih di sepanjang permukaan objek adalah meningkat apabila
parameter bahan mikropolar meningkat. Sementara itu, nilai nombor Nusselt bagi
bendalir mikropolar adalah lebih rendah di sekitar titik genangan hadapan dan lebih
tinggi di sekitar titik genangan belakang berbanding bendalir Newtonian. Kajian juga
mendapati bahawa bagi olakan campuran membantu dalam bendalir mikropolar,
pemisahan lapisan sempadan berlaku lebih awal bagi kedua-dua konsentrasi elemen
mikro yang rendah dan tinggi. Bagaimanapun, bagi kes olakan campuran menentang,
masa pemisahan dapat ditangguhkan bagi aliran melewati silinder manakala bagi aliran
melewati sfera, hanya konsentrasi elemen mikro yang rendah dapat memberikan

keputusan serupa.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

As fluid flow past an object, a thin layer of fluid near the surface is created. This
layer is called the boundary layer, which was presented by Ludwig Prandtl in the early
1900’s. Within this layer, the velocity changes from zero at the surface to the free stream
value away from the surface. The study on boundary layer flow is significant for many
problems in aerodynamics, including wing stall, the skin friction drag on an object, and
the heat transfer that occurs in high speed flight. The unsteady case of boundary layer
flow has become a very important branch of fluid mechanics research including in an
area of convective heat and mass transfer. The presence of time variable in the unsteady
problem as an extra independent variable increases the complexity of its solution
procedure. Literature reviews on unsteady boundary layers can be found in the review

paper by Riley (1975) and in the book by Telionis (1981).

For the fluid flow behavior which cannot be explained in the basis of Newtonian
fluids, the theory of micropolar fluids may play its role. The theory of micropolar fluids,
first proposed by Eringen (1966, 1972) described fluids which consist of rigid, randomly
oriented particles suspended in a viscous medium. Industrial colloidal fluids, polymeric
suspensions and liquid crystals are some examples of micropolar fluids. Besides, the
presence of dust in the air and blood flow in arteries and capillaries may also be modeled
using micropolar fluid dynamics. In addition to the classical velocity vector field, the

governing equations for the flow of a micropolar fluid involve a microrotation vector



and a gyration parameter. The researches on unsteady boundary layer flow of micropolar
fluid in the vicinity of stagnation points have received much attention. However,
solutions for boundary layer flow in micropolar fluid for the entire body have been

obtained only for steady cases.

The problems of unsteady two-dimensional boundary layer flow and heat
transfer of a viscous and incompressible micropolar fluid past a circular cylinder and a
sphere are considered in this study. The unsteadiness is due to the impulsive motion of
the free stream velocity and the sudden change in the surface temperature. These
unsteady problems involved the occurrence of boundary layer separation and flow
reversal. The three dimensional Keller’s box scheme which combine the standard
differencing and modified differencing are used for the solution of these problems. The
standard differencing is used when there is no flow reversal in the previous spatial
coordinate. Otherwise, the modified differencing is applied. The present study is able to
present the numerical solutions not only in the vicinity of stagnation points but also for
the entire surface of cylinder and sphere. In addition, the numerical solutions obtained

are also valid from small time solutions to large time solutions.

The problem statements are given in Section 1.2, followed by objectives and
scope of this study. In Section 1.4, the research methodology is described. Further,
Section 1.5 presents the significance of the study, followed by the outline of the thesis in

Section 1.6. Finally, the governing equations are presented in Section 1.7.

1.2 Problem Statements

How do the micropolar fluids models compare with the Newtonian fluid models
in the problem of unsteady boundary layer flow and heat transfer past a cylinder and a
sphere? What are the effects of micropolar material parameter to the flow characteristics
such as skin friction and heat transfer coefficient? How do the velocity, microrotation

and temperature profiles affected due to the presence of micropolar fluid? Can



micropolar fluid flow give any advantages to the flow separation compared to

Newtonian fluid? How does the case of a sphere differ with the case of a cylinder?

1.3  Objectives and Scope

To calculate the flow characteristics such as in Section 1.2 above by solving the

following problems:

1. Unsteady boundary layer flow past an impulsively started circular cylinder in

a micropolar fluid.

2. Unsteady forced convection boundary layer flow from a circular cylinder in a

micropolar fluid.

3. Unsteady mixed convection boundary layer flow from a circular cylinder in a

micropolar fluid.

4. Unsteady mixed convection boundary layer flow past a sphere in a

micropolar fluid.

The models are assumed to be incompressible and two-dimensional. Here, the
calculations are done for some values of micropolar material parameter K, K =0, 1, 2
and for some values of Prandtl number, Pr=0.7, 1 and 7 following the work by Cebeci
(1978, 1979), Ingham and Merkin (1981), Lok ef al. (2003a, b) and Nazar et al. (2003a,
b).



1.4  Research Methodology

The solutions of the four problems stated in the previous section are sought by

applying the following research methodology:

1.4.1 Mathematical Formulation

The governing equations for problems outlined in the objectives are first given in
dimensional form. The non-dimensionalization of equations is done by introducing
appropriate non-dimensional variables. Through this step, the governing equations can
be transformed into the non-dimensional form of equations. Next, these non-dimensional

forms of equations are simplified using the boundary layer approximation.

The non-dimensional forms of boundary layer equations are then simplified
further by introducing the stream function. Using this step, the number of equations is
reduced since the continuity equation is automatically satisfied by the definition of

stream function. Besides, the number of independent variables is also reduced.

1.4.2 Numerical Computation

A Keller’s box scheme in a three dimensional grid as being applied by Cebeci
(1978, 1979) is used to solve the partial differential equations. This method consists of
discretization using a finite difference method, Newton’s method for linearization and
block-elimination method. At the forward and rear stagnation points, the discretizations
are done on a two dimensional grid as being applied by Lok ez al. (2003a, b, 2006) and
Nazar et al. (2002a, b, ¢, 2003a, b). Other than these points, the discretization should be
made either on the net cube or on the zig-zag grid. This algorithm is developed using

Matlab 7.0.



1.5  Significance of Study

Devices cooled by mixed convection such as electrical heaters and transformers,
solar central receivers exposed to wind currents, electronic devices cooled by fans,
nuclear reactors cooled during emergency shutdown, heat exchangers placed in a low-
velocity-environment are some examples of applications of transient flows in
technologies and industries. Moreover, the effect of buoyancy forces on the heated

boundary layer flow can give a significance impact on the unsteady separation process.

The Newtonian fluids principle has its limitation. It is unable to describe the
behavior of fluid containing particles as micropolar fluids do. In fact, micropolar fluid is
a good model for studying many complicated fluid motion. Hoyt and Fabula (1984) and
Vogel and Patterson (1964) conducted experiments with fluids containing minute
amounts of polymeric additives. It was found that there is a reduction in skin friction
near a rigid body (Hassanien ef al., 1999). Gray and Hilliard (1966) in his invention,
introduce relatively small amounts of a non-Newtonian fluid, a long-chain polymer such
as polyethylene oxide, into the water adjacent the bow of the ship. This alters the shear
characteristics of the fluid in boundary layer of the ship which decreases the overall
frictional drag of the vessel. This leads to the increasing ship speed and it decreases the
required power to maintain a given vessel speed. It is such advantages in the fields of

aeronautics and submarine navigation.

Besides applications in aeronautics and submarine, the study of micropolar fluid
flows with heat transfer has important engineering applications. For instance the
applications in power generators, refrigeration coils, transmission lines, electric
transformers and heating elements. It serves as the basis of understanding some of the
important phenomena occurring in heat exchanger devices (Elbarbary and Elgazery,
2005). Eringen (2001) demonstrated the adequacy of applying micropolar fluid theory to
describe liquid crystal behavior. According to him, other possible substances that can be
modeled by micropolar fluids are anisotropic fluids, magnetic fluids, clouds with dust,

muddy fluids and biological fluids. Moreover, the micropolar fluid theory may have



applications in the understanding flow of colloidal fluids, fluids with additives,
suspension solutions, blood flows, fluids with bar like elements etc. In addition, it also
could be applied in a number of processes that occur in industry. Such applications
include the extrusion of polymer liquids, solidification of liquid crystals, cooling of
metallic plate in a bath, ferro liquids, etc. (Nazar et al., 2003b). The study of micropolar
fluid flow is necessary due to the increasing importance of the flow behavior which

cannot be characterized by Newtonian relationships.

1.6 Thesis Outline

This thesis consists of seven chapters. Chapter 1 begins with the background of
the research which outlines the general introduction, problem statements, objectives and
scope, research methodology and significance of this study. The governing equations of
this research are shown in the next section followed by the literature review. The
literature review is divided into four sections specifically for each problem considered in

this study.

Details of the method applied in this research are discussed in Chapter 2. The
problem of unsteady mixed convection boundary layer flow past a cylinder in a
micropolar fluid is taken as an example to show how this method is applied. Chapter 3
discusses the problem of unsteady boundary layer flow past an impulsively started
circular cylinder in a micropolar fluid. Both cases of small time and large time along a

cylinder surface are considered.

In Chapter 4, the research in Chapter 3 is extended to include the effect of
temperature differences between the cylinder surface and its surrounding fluid. An extra
equation and boundary condition for temperature should also be taken into account. We
further extend this problem to a mixed convection case in Chapter 5. The effect of
buoyancy force that appears in the momentum equation is investigated for both opposing

and assisting cases.



Chapter 6 discusses the problem of unsteady mixed convection boundary layer
flow past a sphere in a micropolar fluid. As for the case of a cylinder, we investigate the
effect of buoyancy force for both opposing and assisting cases. All of the cases
considered in Chapter 3-6 are solved numerically using the three dimensional Keller’s
box scheme outlined in Chapter 2. The obtained numerical results which include the
velocity, microrotation and temperature profiles as well as the skin friction and the heat
transfer coefficient are presented in each of these chapters. Results for the separation
point and separation time are also included. Finally, the summary of this research are

given in Chapter 7. In this chapter, we also include the suggestions for future research.

1.7  Governing Equations

The governing equations for the unsteady micropolar fluid flow and heat transfer
consist of the continuity, momentum, thermal energy and microrotation equations. The
continuity equation expresses the principle of mass conservation whereas the momentum
equation is derived using the Newton’s second law of motion. The thermal energy
equation is based on the first law of thermodynamics while the microrotation equation is
formulated from the fundamental principle of conservation of angular momentum for
polar fluids with the non-symmetric stress tensor and couple stress tensor. In vector

form, these equations are expressed as (Guram and Smith, 1980; Lukaszewich, 1999):

V-u=0, (1.1)
Du  —_ = =
pD—f=—Vp+(/1+K‘)V u+x(VxN)+F, (1.2)
DT  —,=
C,——=cV°'T, 1.3
ij—l\_I=y§2N+K(—2N+§xﬁ) (1.4)



In the above equations, U is the velocity vector, N is the microrotation vector normal to
the X, y -plane, 7 is the temperature of the fluid, p is the pressure, 7 is the time, p is
the density of the fluid, x is the dynamic viscosity, x is the vortex viscosity, j is the

microinertia density, y is the spin-gradient viscosity, F is the body force, C, is the

specific heat at constant pressure and c is the thermal conductivity. The symbol V? is

the Laplacian operator where the gradient is defined as V = ai—i + % j. Hereiand j are
X v

the unit vectors, x is the coordinate measured along surface of the cylinder (or sphere)

and y is the coordinate measured in the normal direction to the wall.

Equations (1.1) — (1.4) are applied for the problem of unsteady mixed convection
boundary layer flow in a micropolar fluid. For the problem of isothermal unsteady
boundary layer flow in a micropolar fluid, Equation (1.3) may be neglected while the
buoyancy term F in Equation (1.2) is taken as F = 0. For the problem of unsteady forced
convection flow in a micropolar fluid, Equations (1.1)-(1.4) are considered while the

buoyancy term F in Equation (1.2) is taken as F = 0.

1.8 Literature Review

The literature review for this study is presented in this chapter. The literature
reviews in the next four sections are given based to the four problems outlined in the
objectives of this study. In Section 1.8.1, we present the literature review for the
problem of unsteady boundary layer flow past an impulsively started circular cylinder
while in Section 1.8.2, we present the literature review of the forced convection
boundary layer flow past a cylinder. The literature review for the problem of unsteady
mixed convection boundary layer flow past a cylinder is presented in Section 1.8.3
followed by the literature review on the unsteady mixed convection boundary layer flow

past a sphere in Section 1.8.4.



1.8.1 Unsteady Boundary Layer Flow Past an Impulsively Started Circular
Cylinder

The classical problem of unsteady boundary layer flow of a viscous and
incompressible fluid past a circular cylinder has been considered by many authors, such
as, Collins and Dennis (1973a, b), Bar-Lev and Yang (1975) and Cebeci (1979). Cebeci
(1979) used the Keller’s box in three dimensional grid with zig-zag differencing in
dealing with the flow reversal. The generalized differential quadrature (GDQ) and
generalized integral quadrature (GIQ) approach have been applied by Shu ef al. (1996).

In micropolar fluids, the research on steady boundary layer flow past a cylinder
has received considerable attention. Nath (1976) considered the steady problem around a
cylinder and a sphere in micropolar fluids. The solutions were obtained using an implicit
finite difference. He found that in micropolar fluid, the separation occurs at earlier
streamwise location as compared to Newtonian fluids. In contrast with the microrotation
profiles and microrotation gradient, the skin friction and velocity profiles are almost
insensitive to microrotation parameter. Hassanien et al. (1996) considered a steady
boundary layer flow at an axisymmetric stagnation point on infinite circular cylinder.
They developed a numerical procedure based on Chebychev polynomials and found that
micropolar fluids display a reduction in drag compared to those for Newtonian fluid.
The wall shear and couple stresses increases with the increasing values of the micropolar

material parameter, K.

The unsteady boundary layer flow of a micropolar fluid near the forward
stagnation point of a plane surface which is impulsively started from rest was studied by
Lok et al. (2003a). Their numerical results for the transient solution were obtained by
implementing the Keller’s box scheme in two-dimensional grid. They found that the skin
friction coefficient increases as the values of the material parameter K increase. The
velocity and microrotation profiles attain the steady flow case as time progresses. In a
next paper, Lok ef al. (2003b) extend the above problem to the case of rear stagnation

point. Near the rear stagnation point, the separation occurs at the same value of time ¢
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for any value of K when the case of weak concentration of microelements, n=1/2 is

taken into account.

Based on Cebeci (1979) and Lok ef al. (2003a, b), the first problem of this
research is formulated. The unsteady boundary layer flow past an impulsively started
circular cylinder in micropolar fluid is studied. Here, the unsteady boundary layer flow
of a micropolar fluid is considered not only at the forward and rear stagnation points, but

also for other streamwise points along the cylinder surface.

1.8.2 Unsteady Forced Convection Boundary Layer Flow Past a Cylinder

Extending his work on boundary layer flow problem, Cebeci (1978) investigate
the heat transfer aspects of an impulsively started circular cylinder. The Nusselt number
near the forward stagnation point tends rapidly to its steady-state value as the value of
time becomes large. Kim et al. (1987) studied the numerical calculations of the velocity
and temperature fields for unsteady flows over a single circular cylinder and a bundle of
cylinders. They considered periodic disturbances, natural or externally imposed.
Periodic and averaged heat transfer was examined. Eswara and Nath (1992) considered
the unsteady forced convection flow over a longitudinal cylinder, which is moving in the
same or in the opposite direction to the free stream. The governing partial differential
equations have been solved using an implicit finite-difference scheme in combination

with a quasilinearization technique.

All of the above mentioned researches are done in a Newtonian fluid medium.
Besides study of forced convection on Newtonian fluid, research on this area also
considered for micropolar fluids. Gorla ef al. (1983) studied the steady micropolar
boundary layer flow and heat transfer over a flat plate. They considered boundary
conditions of isothermal wall, constant surface heat flux and insulated wall with viscous
dissipation effects. A study of unsteady boundary layer flow, heat and mass transfer of a

laminar incompressible micropolar fluid was conducted by Kumari and Nath (1984).
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They considered the flow at the stagnation point of a two-dimensional and an
axisymmetric body when the free stream velocity and the wall temperature vary

arbitrarily with time.

Gorla and Ameri (1985) investigated the steady laminar boundary layer flow and
heat transfer of a micropolar fluid in axial flow along a continuous, moving cylinder.
Both uniform surface temperature and uniform surface heat flux boundary conditions
were considered by these authors. The steady-state boundary layer flow and heat transfer
of a micropolar fluid in the vicinity of an axisymmetric stagnation point on a cylinder
was presented by Hassanien and Salama (1997). They found that micropolar fluids
display drag reduction and the friction factor is lower when compared to Newtonian
fluids. Further, the steady micropolar fluid flow and heat transfer in an axisymmetric
stagnation point on a horizontal cylinder with suction was presented by Elbarbary and
Elgazery (2005). They assumed that the fluid density and the thermal conductivity vary
linearly with temperature, while the fluid viscosity is assumed to vary as a reciprocal of

a linear function of temperature.

Mahfouz (2007) presented the solutions of unsteady forced convection flow from
a circular cylinder in micropolar fluid by considering the full governing equations in
order to predict the vortex shedding process. The problem of unsteady boundary layer
flow and heat transfer has potential relevance to many practical applications. Hence, the
second problem of this research will consider the problem of unsteady forced convection
boundary layer flow past a cylinder in micropolar fluid. As in our first problem in the
previous section, the unsteady micropolar fluid case for all points along a cylinder is

considered but here we include the effect of forced convection.

1.8.3 Unsteady Mixed Convection Boundary Layer Flow past a Cylinder

The problem of steady mixed convection boundary layer flow past a circular

cylinder in a Newtonian fluid has been considered by Merkin (1977). He found that
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heating the cylinder delays separation and if the cylinder is warm enough, there will be
no separation at all. On the other hand, cooling the cylinder brings the separation point
nearer to the lower stagnation point and for a sufficiently cold cylinder; there will not be
a boundary layer on the cylinder. Ingham and Merkin (1981) extended this problem to
the unsteady case. In this study, the horizontal cylinder is placed in a stream flowing
vertically upwards. The numerical solutions of the unsteady boundary layer equations

were presented for any station along the cylinder.

The steady problem of mixed convection flow past a cylinder in micropolar fluid
has been studied by several authors. Mohammedien (1996) presented the steady mixed
convection in an axisymmetric stagnation flow of micropolar fluid on a vertical cylinder.
The mixed convection boundary layer flow of a micropolar fluid over an isothermal
horizontal cylinder has been studied by Nazar ez al. (2003c). Both cases of a heated and
cooled cylinder were considered. The Keller box method was applied to solve the
problem for both cases of heated and cooled cylinder. The calculation was made up to

the point of separation of the boundary layer.

The unsteady convection boundary layer flow also has been applied successfully
to micropolar fluid models. Kumari and Nath (1989) studied the unsteady laminar mixed
convection boundary layer flow of a thermomicropolar fluid over a long thin vertical
cylinder when the free stream velocity varies arbitrarily with time. The wall temperature
is assumed to be time dependent while the temperature in the free stream is considered
as a constant. The boundary layer solutions of unsteady combined convection of a
micropolar fluid among a vertical plate have been presented by Gorla (1995). It was
assumed that the free stream is arbitrary varied with time. Takhar et al. (1998)
considered the problem of mixed convective unsteady three dimensional flow of a
micropolar fluid near the forward stagnation point of a blunt nosed body. Here, the free
stream temperature is taken as constant while the dissipation effects near the stagnation
point are assumed to be negligible. The unsteady two-dimensional flow of micropolar
fluid past a semi-infinite porous plate in a porous medium was studied by Kim (2001).

They considered the free stream velocity which follows an exponentially increasing or



13

decreasing small perturbation law. Wang and Chen (2001) studied the transient force
and free convection of micropolar fluid flow over a vertical wavy surface. More
recently, Ibrahim and Hamad (2006) investigated the unsteady mixed convection
boundary layer on a horizontal cylinder in micropolar fluid. Their focus is on the flow
near the stagnation point of a non-isothermal circular cylinder. Kumar et al. (2006)
considered the problem of mixed convection on a moving vertical cylinder with suction
in a moving micropolar fluid medium. In micropolar fluid, the problem of unsteady
mixed convection was discussed by Lok ef al. (2006) who considered the problem in the

vicinity of the stagnation point on a vertical surface.

The effect of mixed convection on an unsteady boundary layer flow of
micropolar fluid will be considered in the third problem of this research. The flow and
heat properties for different time and for all points along the circular cylinder will be
discussed. Comparing our problem with Ingham and Merkin (1981), another extra
equation should be considered due to the presence of micropolar fluid which is the

angular momentum equation.

1.8.4 Unsteady Mixed Convection Boundary Layer Flow Past a Sphere

Numerical solutions for transient flow past a sphere in a viscous fluid has been
presented by Dennis and Walker (1972). This unsteady problem is solved using an
iterative scheme based on the Crank-Nicolson implicit finite difference approximation.
The pressure at the rear stagnation point is found to be initially large and negative. As
the value of time increases, this pressure rises to a maximum at separation and then
slowly decreases to a steady value. Recently, Al-Ghamdi (2004) investigated
numerically the impulsively started fluid flow about a solid sphere subjected to a
uniform gas stream. A wide range of Reynolds numbers are chosen in this study. The
increase of the Reynolds number leads to the decrease to the boundary layer thickness.
Besides research on flow past a sphere, the study on the convective effect on a sphere

also has reached much attention among many authors. Juncu (2007) presented a
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computational study of the unsteady forced convection heat/mass transfer from spheres
in a uniform viscous flow. Three cases were considered: equal spheres with identical
physical properties, equal spheres with different physical properties and spheres of

different sizes with identical/different physical properties.

The steady laminar free convection on an isothermal sphere in a micropolar fluid
has been considered by Nazar ef al. (2002a). They concluded that the heat transfer
coefficient values are lower, while the skin friction parameter values are higher for
micropolar fluids than those for Newtonian fluid when the Prandtl number is fixed.
Simultaneous to this study, Nazar et al. (2002b) considered the case of constant surface
heat flux of the steady free convection sphere in micropolar fluids. Recently, Cheng
(2008) extended the work of Nazar ef al. (2002a) to examine the steady natural
convection from a sphere in micropolar fluids with constant wall temperature and
concentration. They observed that the natural convection heat and mass transfer from a

sphere in Newtonian fluids are higher than those in micropolar fluids.

Nazar et al. (2002c¢) studied the steady case of the mixed convection boundary
layer flow about a solid sphere in Newtonian fluid. Both the assisting and opposing
cases were considered in this study. The extension of this paper to the problem of
micropolar fluid can be found in Nazar ef al. (2003b). The effects of the material and
mixed convection parameters on the local skin friction and local heat transfer
coefficients were illustrated. One of their findings is that the buoyancy forces retard the
fluid which makes the position of the boundary layer separation is brought nearer to the

lower stagnation point of the sphere.

The present problem is formulated due to the lack attention given to the problem
of unsteady flow past a sphere in micropolar fluid. The unsteady mixed convection
boundary layer flow past a sphere will be investigated as the fourth problem of this

research.





