
AUTOMATING SPECIFICATION TO IMPLEMENTATION SOFTWARE

DEVELOPMENT USING MODEL DRIVEN ARCHITECTURE

ABD ELGAFFAR HAMED AHMED ALI

UNIVERSITI TEKNOLOGI MALAYSIA

AUTOMATING SPECIFICATION TO IMPLEMENTATION SOFTWARE

DEVELOPMENT USING MODEL DRIVEN ARCHITECTURE

ABD ELGAFFAR HAMED AHMED ALI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Computer Sciences)

Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia

FEBRUARY 2011

iii

�

�

To Professor Sheik Hassan (Blessings be upon him), who has changed my life.

To his beloved son Sheik Mohammed

For my great mother and father

 To my supervisors and sponsor

iv�
�

ACKNOWLEDGEMENT

Praise to the Almighty, who has provided whatever talent I might have, and

has given the great gifts which have helped me to reach this point.

Professor Sheik Hassan ElFatih(blessings to him who passed away) my first beloved

teacher, inspired me to loyalty and wisdom . He taught me the origin of ethics and

how to practice it. I belief it was the main reason of any success I have it in my life

generally and for the Phd especially. Finally the one who teach me you do not thank

Allah if you do not thank those who helped you.

My beloved person his son Sheik Mohammed he always guide me by his wise

advices. His concern and taking care of study let me continue my postgraduate study

and award me the progress I have in my field of research. It has been of significant

value. I wish to thank his unflagging support during this period.

Professor Shamsul Bin Sahibuddin for stimulating suggestions and encouragement

helped me during my study years at UTM, and from him I received a great balance of

freedom, monitoring, and guidance in gaining a challenging yet enjoyable learning

experience of doing research.

Professor Robert Colomb who suggested the original topic for my thesis and who

helped me in many ways to develop it. His advice on both the thesis research and on

how to behave as a professional has been of enormous value.

I would like to pay tribute to Sudan University of Science and Technology for

sponsoring my PhD study.

My great appreciations for my parents who struggle during my study keep me stable

and finish my study on time. Also I would like my brother Habib Alawi for his

collaboration and help.

v

ABSTRACT

Model driven architecture (MDA) is a new development methodology which

raises abstraction and re-using levels. MDA is aimed at developing applications in

established domains without writing new codes. To this end, models are first-class

artifacts where the specification of the system is modeled using platform independent

model (PIM). The implementation is modeled as code-based API using platform

specific model (PSM). MDA is about mapping PIM to PSM, whereby specifications

will translate into calls to the code-based API which execute it. The ultimate goal of

MDA is to automate this process. This process is not specified in detail in standard

Object Management Group (OMG) document. Due to lack of previous work tackling

the development problem from specification to implementation, this research

proposes End to End Development Engineering (E2EDE) method using MDA

methodology. E2EDE is a novel approach to software engineering, where the notion

of variability is utilized from Software Product Line and used to model design

decisions in PSM. PIM is equipped with Non-Functional Requirements (NFRs) to

inform design decisions; thereby guiding the mapping process. A Unified Modeling

Language (UML) profile is developed for modelling NFRs in PIM and Meta-Object

Facility (MOF) profile for modeling variability in PSM. To address mapping

variability and its modeling, an MOF metamodel is developed. In addition, a

strategic PSM is developed for messaging systems to be configured into different

applications such as a helpdesk system. Two different case studies with different

scales are used to evaluate E2EDE. Finally, Profile UML package and model

manipulation approach is taken to implement aspects of E2EDE. Being applied in

different cases, the E2EDE has shown productivity by allowing reuse of different

artifacts: PIM and PSM mapping metamodels and also encouraging mapping

automation.

vi

ABSTRAK

Seni bina pacuan model (MDA) adalah metodologi pembangunan baru yang

meningkatkan tahap peniskalaan dan guna semula. MDA disasarkan pada

pembangunan aplikasi bagi domain yang mantap tanpa menulis kod baru. Untuk

tujuan ini, model merupakan kelas pertama yang mana spesifikasi sistem dimodelkan

menggunakan model platform bebas (PIM), sementara pelaksanaannya dimodelkan

menggunakan model platform spesifik (PSM) sebagai model kod berasaskan API.

MDA adalah pemetaan PIM ke PSM yang mana spesifikasinya akan diterjemah

kepada panggilan ke kod-asas API yang akan melaksanakannya. Matlamat akhir

MDA adalah untuk mengautomasikan proses ini. Proses pengautomasian ini tidak

ditentukan secara terperinci dalam dokumen piawai Object Management Group

(OMG). Oleh kerana kurangnya kajian terdahulu yang menangani masalah

pembangunan daripada spesifikasi hingga pelaksanaan, kajian ini mencadangkan

kaedah kejuruteraan Pembangunan Hujung ke Hujung (E2EDE) menggunakan

metodologi MDA. E2EDE adalah pendekatan baru dalam dunia kejuruteraan

perisian, yang mana idea kepelbagaian diambil dari Barisan Produk Perisian dan

digunakan untuk membina model reka bentuk keputusan dalam PSM. PIM

dilengkapkan dengan Keperluan Bukan Fungsi (NFRs) untuk memaklumkan

mengenai keputusan reka bentuk dan seterusnya membantu proses pemetaan. Profil

Unified Modeling Language (UML) dibangunkan untuk membentuk NFRs dalam

profil PIM dan Meta Object Facility (MOF) dalam membentuk kepelbagaian dalam

PSM. Metamodel MOF dibangunkan untuk memudahkan kepelbagaian pemetaan

dan pemodelannya. Selain itu, PSM strategik telah dibangunkan bagi sistem pesanan

yang dapat dikonfigurasikan bagi menghasilkan aplikasi berbeza seperti sistem meja

bantuan. Dua kajian kes dengan skala yang berbeza digunakan untuk menilai

E2EDE. Akhir sekali, pakej UML Profil dan pendekatan manipulasi model

diaplikasikan bagi melaksanakan aspek-aspek E2EDE. Setelah digunakan dalam kes

yang berbeza, E2EDE menunjukkan produktiviti dengan membolehkan penggunaan

semula artifak yang berbeza iaitu PIM dan pemetaan metamodel PSM dan juga

menggalakkan automasi pemetaan.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xiv

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xvii

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Motivation 4

1.3 Problem Statement 8

1.4 Objective 11

1.5 The Research Scope 11

1.6 Contributions 12

1.7 Outline of the thesis 16

2 MDA AND METAMODELING 19

2.1 Abstraction 19

 2.1.1 Object oriented paradigm 21

 2.1.2 Component-based Paradigm 23

viii

 2.1.3 Middleware Softwares 23

2.2 Software Reuse 25

 2.2.1 Software Reusing Techniques 26

2.3 Summary 30

3 RESEARCH METHODOLOGY 31

3.1 Research Methodology 31

3.2 The Research Design 32

3.3 Operational Framework 34

3.4 The Criteria for Case Study Selection 36

3.5 Design Evaluation in Design science 37

3.6 Analyzing Case study Evidence 38

3.7 Summary 39

4 MODEL DRIVEN ARCHTTECTURE AND
METAMODELING 41

4.1 Metamodeling and metalevels 41

4.1.1 Why metamodels ? 42

4.2 Model Driven Architecture(MDA) 45

4.3 MDA Process 48

4.4 OMG Metamodeling Hierarchy 49

4.5 Meta-Object Facility (MOF) 51

 4.5.1 Metalevels and Instances Models 57

4.6 Transformation in MDA 61

4.7 UML Profiles 62

4.8 Metamodel Versus Profile 67

4.9 Mapping from UML Class model to a Relational Database

 Implementation model 73

4.10 The Mappings Problem 76

4.11 Query View Transform (QVT) 78

 4.11.1 The Standardized Process 78

ix

 4.11.2 QVT Abstract Syntax and Semantics 82

 4.11.3 Transformation 83

 4.11.4 Typed Model 83

 4.11.5 Domain 84

 4.11.6 Rule 84

 4.11.7 Predicate 85

 4.11.8 Pattern 85

4.12 The Inputs/ Outputs of the mapping 92

4.13 How MDA Works 94

 4.13.1 An Example of Schema Representation for

 Abstract Syntax 95

4.14 Summary 100

5 DOMAIN ENGINEERING ANDVARIABILITY
 CONCEPTS 104

5.1 Software Product line (SPL) 104

5.2 Domain Engineering 106

 5.2.1 Variability Management 108

 5.2.3 Mechanisms of Variability 117

 5.2.4 Components Development 118

5.3 Product Line Architecture (PLA) 119

5.4 Application Engineering 121

 5.4.1 Application Requirements Engineering 122

 5.4.2 Application design 123

 5.4.3 Application realization 123

5.5 MDA in the Context of the Software Product Line 124

 5.5.1 MDA decouples implementation model

 from application model 125

 5.5.2 MDA is intended to automate the craft of code 126

x

 5.5.3 Higher abstraction and systematic development

 methodology 126

5.6 A Taxonomy of Variability 127

5.6.1 The Identification Phase 129

5.6.2 Implicit Phase 130

5.6.3 The Introducing Phase 130

5.6.4 The Population Phase 131

5.6.5 The Binding Phase 132

5.7 Variability Realization Techniques 133

5.8 Allocation of The area of Interest From Variability

 Problem Space 134

5.9 Summary 135

6 DESIGN PATTERN AND NONFUNCTIONAL
 REQUIRMENT 137

6.1 Design Pattern 137

 6.1.1 Pattern Life Cycle 140

 6.1.2 Pattern Formalism 141

 6.1.3 Frameworks 142

6.2 MDA in the Context of the Design Pattern 143

 6.2.1 Limited to Domains with a Well-established

 Code Base 143

 6.2.2 Separating Concerns Allows Application Logic

 and Platform to be Volatile and Promotes

 Reuse 144

 6.2.3 End of Pattern Life Cycle 146

6.3 Nonfunctional Requirements (NFRs) 146

6.4 The NFRs in MDA Context 150

xi

6.5 Summary 152

7 PROPOSED END TO END DEVELOPMENT
 ENGINEERING DESIGN AND IMPLEMENTATION 154

7.1 E2EDE Design Issues 155

7.2 Introduction 155

7.3 The Steps of the Proposed E2EDE 159

7.4 Modeling Variation Point in PSM (Principle A) 160

7.5 Variability Analysis (Principle B) 160

7.6 Variability Profile (Principle C) 162

7.6.1 The Profile Instance Model 164

7.7 Modeling of Non-Functional Requirements

 (Principle D) 165

7.8 Transformation of informative PIM to PSM

 (PrincipleE) 168

 7.8.1 The First Problem – Choice of Variants 169

 7.8.2 The Second Problem: Variant as a Configuration

 of Functions 170

7.9 E2EDE Implementation Aspects (Principle G) 174

 7.9.1 PSM Variability Transformation Rules

 Encoding 176

 7.9.2 Packaging Mapping Variability in Opaque Rule

 (Principle F) 177

 7.9.3 Profile and Variability Representations 178

 7.9.4 Packages (Principle G) 180

7.10 E2EDE Process Model and Physical Architecture 183

7.11 Guard Predicates 186

 7.11.1 Guard Syntax 187

 7.11.2 Guard Semantics 187

7.12 Related Works 189

xii

7.13 Summary 192

8 CASE STUDIES 194

8.1 The First Case Study - Messaging 194

8.2 The Problem Specification 196

8.3 The Mappings of helpdesk PIM to messaging

 PSM (Principle E) 201

8.4 Mappings of Class Operations 205

8.5 The second Case Study : Managing International

 Archery Federation Competition 207

 8.5.1 Disciplines of Archery 208

 8.5.2 Classes of Competitors 208

 8.5.3 Division of Competitors 208

 8.5.4 Individual Competition 209

 8.5.5 Team Competition 210

 8.5.6 Scoring of Archery Events 210

8.6 Mapping of Inheritance 214

8.7 Applying Principle B 215

8.8 Analysis of the Case study 217

8.9 Applying Principle F 218

8.10 Discussion of the Results 219

8.11 Strategic Messaging System PSM 224

8.12 Summary 228

9 CONCLUSION 231

 9.1 Summary of The Results 231

 9.2 Limitations and Future research 235

 REFERENCES 238

xiv�
�

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 The operational research framework for Phases

1 to 5.

35

5.1 Variability Management Mechanisms 118

5.1 Table model element 136

5.2 Column model element 136

5.3 Cross Reference Table&Key 136

5.4 Key model element 137

8.1 Part of mappings from Helpdesk system PIM to PSM

messaging system

204

8.2 The mapping between object model and relational

model

212

8.3 NFRs Profile instances of Archery Olympic PIM 214

8.4 Configuration for a set of products from PSM

metamodel with Profile appliaction

226

xv�
�

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Overview of Thesis Concepts Organization 29

3.1 The research design method 32

3.2 Operational Framework 33

4.1 A conceptual model of the design language 45

4.2 MDA core process 49

4.3 An example of four-layer metamodel hierarchy 50

4.4 fragment of UML2 Metamodel from QVT 53

4.5 A fragment of the MOF classes Model 54

4.6 Classes of UML metamodel 55

4.7 Association rendered in UML metamodel 56

4.8 MOF instances model 58

4.9 Part of instance model using MOF instance model for UML in

Figure 4.4 59

4.10 The same M0 object created by MOF instance Model of UML

instance Model 61

4.11
A UML model of Subclasses of concepts of Hadith sciences in

Islam

5

63

4.12 A Sample of Profile 64

4.13 A Sample of Profile instances annotating class model 65

4.14 A Profile metamodel from MOF standard document 66

4.15 The identifier metamodel from 69

4.16 Simple Graph with tokens Metamodel 70

4.17 Visualization of state of a simulated Graph/Token model

 instance 70

xvi�
�

 4.18 UML Profile extending metaclass class to model node. 71

 4.19 UML instance model for the profile of figure 2.16. 72

4.20 Simplified UML2 Metamodel from QVT Specification 73

4.21 Simplified Relational Database Model from QVT Specification 75

4.22 QVTBase Package - Transformations and Rules. 82

4.23 QVT Relation Package 86

4.24 MOF instances Model showing PSM instances construction 94

from university PIM.

4.25 Table model element 97

4.26 Column model element 97

4.27 Cross Reference Table and Key 97

4.28 Key model element 97

5.1 Metamodel of variation point, variants and variability depen-

 dependency from 112

5.2 The variability metamodel updated by constraints dependency

 and Alternative choice 114

5.3 Graphical notation of the variability models from 116

5.4 Example of Orthogonal variability modeling 116

5.5 Variability Life Cycle and Taxonomy 129

6.1 Classic structure for publisher-subscriber 144

6.2 Another design alternatives with Added middleware Publisher 145

7.1 Variability MOF-Profile. 164

7.2 MOF Instance Model of the Profile. 165

7.3 NFR UML Prof i le 168

7.4 PIM to PSM Mapping metamodel 176

7.5 simple UML2.0 metamodel extention From QVT specification

 as Profile implementation 179

7.6 The Model of MDA Mappings Automation by Toolset 184

7.7
Architecture Model for Services Implementing E2EDE

185

8.1 PIM: Helpdesk System with NFRs Documented 198

8.2 PSM of Messaging System with Variability in Design Decisions 199

8.3 Messaging System PSM annotated by variability Profile 200

8.4 Part of Mappings Rules from Helpdesk PIM to Messaging 204

xvii�
�

 system PSM

8.5 Behavioral Mappings activity for Helpdesk PIM to Messaging 205

 Messaging system PSM

8.6 PIM specifying main parts of Archery sport of IOC and FITA 210

 8.7 Simplified Relational Database Model from QVT Specification 211

xviii�
�

LIST OF ABBREVIATIONS

API - Application Programming Interface

CASE - Computer Aided Software Engineering

COTS - Commercial Off-The-Shelf

CORBA - Common Object Request Broker Architecture

EMF - Eclipse Modeling Framework

FIPA - Foundations of Intelligent Physical Agent

FITA - Federation of International Archery

OMG - Object Management Group

IEEE - Institute of Electrical and Electronics Engineers

ISO/IEC - International Organization for Standardization/ Engineering

 Consortium

MOF - Meta Object Facility

J2EE - Java 2 Platform Enterprise Edition

MDA - Model Driven Architecture

MOF - Meta Object Facility

MQ - Message Queuing

MSMQ - Microsoft Message Queuing

OCL - Object Constraint Language

OMG - Object Management Group

ODM - Ontology Definition Metamodel

PFA - Product Family Architecture

xix�
�

PIM - Platform Independent Model

PSM - Platform Specific Model

WMC - Workflow Management Collation

SQL - Structured Query Language

QVT - Query/Views/Transformations

UML - Unified Modelling Language

UML2 - Unified Modelling Language, version XML eXtensible

Markup Language

XMI - XML Metadata Interchange

�
�

CHAPTER 1

INTRODUCTION TO THESIS

1.1 Introduction

“An important aspect of some of the latest OMG standards is that they greatly

advance the art, science, and scope, of modeling. The combined power of these

model-driven standards forms the basis of a compelling approach to long-lived

architectures for distributed, component-based systems.” (OMG, 2003).

Today a majority of software development strategies require complexity

because of code-based adoption and manual efforts that make the cost of their

products high. Requirements are increasing and changes from time to time lead to

inflating the total cost. The craft of code has become tedious until it begins to look

like surgery operations (due largely to increasing demand for high quality). On one

hand, developers rely entirely on code so they express the model of the system they

are building in a third-generation programming language like java, C#, or C++ (i.e.

packages, modules), and any model for architecture designs are left separate and

informal. On the other hand, the evolution of these solutions becomes unavoidable.

For instance, the technologies are volatile even within the same technology

paradigm; versions produced with different capabilities are shipped by software

2�
�

providers continuously. This situation complicates the understanding of the

system in general and makes it difficult to manage the evolution especially in large

scale systems. Therefore, the investments in systems based on this traditional

methods and the instability of technologies and requirements, yield disappointing

results because many projects fail and others go over budget.

The opening quotation is by the Object Management Group, a non-profit

organization that embraces about 800 of the largest companies in the IT world. It is

developing many of the dominant standards in industry, in particular UML. This

thesis is about a new trend for software architecture whereby a model-driven

approach is followed to guard against the effects of changes in software technology.

The OMG’s version of this model-based approach is called Model-Driven

Architecture, or MDA (OMG, 2003).

 One reason behind MDA that is because the ability of current software

development artifact to adapt is limited so longevity of artifacts is short. As systems

are growing and becoming very complex, the efforts of developing and modifying

them with code-based approaches are more expensive, even sometimes impossible

which leads to software failures. This means the development artifacts are required to

be of high quality and deliver more functionality to cope with such challenges. On

other hand, the ability to have strategic software assets (i.e. models) is needed to

reduce the high cost through the notion of re-use. Less human intervention or

increased automation is a proven factor for increasing productivity by removing

complex tasks and mechanizing the process of producing code.

It turns out that the extent to which quality, longevity, and cost of production

are balanced when developing software determines the economic viability of the

development strategy (Frankel, 2003).

Modeling and models have a high impact on communication among humans

which helps manage complexity and is a means by which a system is documented.

3�
�

Raising the abstraction level and re-usability are the key success factors for building

software that is not only reliable but also economically viable. This concept is what

is meant by the the above OMG quotation. As a consequence of abstraction reuse

increases also, because abstraction from the OMG viewpoint is based on language

and has well defined form (“Syntax”) and meaning (“semantics”). Hence, developing

software by this new adopted approach is considering Models or specifications as

first class entities. This is why this approach is called Model Driven Architecture

(MDA).

There are longer established re-use approaches such design pattern (Gamma et

al., 1995) and software product line (Pohl et al., 2005) in the literature. The former

introduces the concept of design re-use whereby recurring pairs of problem and

solution is prepared to be reusable any number of times for any similar class of

problems. The latter is about finding commonalities among systems to identify

components that can be applied to many systems, and to identify program families

that are positioned to take fullest advantage of those components (Weiss et al., 1999).

This process is called domain engineering which is a matter of variability

management.

Design Pattern raises abstraction to a higher level than object in the object

programming model, because it consists of many objects collaborating to fulfill some

responsibility such as Publish-subscribe in a distributed system. Software product

line increases the abstraction level and re-using theme even higher than design

patterns. In fact components might include a number of design patterns based on

their complexity. Furthermore, software product line is built around the concept of

artifact re-use such as requirements models, architecture etc. Therefore both are

forms of raising abstraction levels and the theme of re-use.

MDA is more recent, following the same trend but in a more effective and

economical model-driven way. MDA allows the same model to be realized on

multiple platforms thereby improving portability. It improves integration based on

models of relationships across different domain applications, and standardizes

4�
�

component interfaces thereby affording interoperability. It increases reusability by

embracing standard platforms for example CORBA, XML, J2EE.

Therefore MDA is the most promising re-use approach, but for several

reasons the relationship between MDA and the other longer established re-use

disciplines should be studied. This is why in this thesis exploring and investigating

the relationship between MDA, software product line and design pattern is pivotal.

As consequence of that I will show how MDA can build on both of the earlier

approaches.

1.2 Motivation

 “The MDA defines an approach to IT system specification that separates the

specification of system functionality from the specification of the implementation of

that functionality on a specific technology platform. To this end, the MDA defines an

architecture for models that provides a set of guidelines for structuring specifications

expressed as models.” (OMG, 2003).

 From the above OMG text we observe three key concepts: specification,

separation of concerns (business functionality-implementation), and architecture of

models.

Due to increasing software requirements and resulting complexity in current

software, effective software development methods become essential. The automation

from specification through to implementation is a long-standing aim in software

engineering. Typically current software we use and build exhibits increasing

variability for example in business rules, and the technology which changes within

even the same technology paradigm. As a result there are a number of versions

5�
�

shipped to customers. For example java has a number of versions like JDK 1.4 and at

the time of writing it had reached java 7. The cause of this variability includes the

pressure to add new features or enhance the functionality of service provided by the

system and non-functional aspects. Therefore it becomes difficult to manage the cost

as there are great resources needed to cope with these changes. Adding new features

to a legacy system would require checking the integration between system parts

which is considered a challenging task in the code-based approach. If we look at the

current demand and size of software, we could conceive the situation :

1- “The size, complexity, and scope of service-oriented architecture continue to

grow as these systems are starting to cross organizational boundaries and a

market of third-party services is emerging...”(Bianco et al., 2009)

These include in particular eBay- like companies offering platforms for

managing bids, generating commissions, and performing other functions related to

online auctions, and Amazon-like companies offering services for businesses,

consumers, associates, sellers and others.

2- Google Chrome (2010) has a new generation of browsers characterized by the

highest security, working differently from browsers like Mozilla and Internet

Explorer but having same functionality. The reason is to add more security,

performance and reliability.

3- Two universities such as UTM and SUST for example could agree on

running shared postgraduate programs where students could study partially in

one university and complete their studies in the other. They share resources

such as credit hours and etc. So their credit hours studied at either university

should be kept for awarding the degree.

In fact these are only a few of a large number of examples for large, medium

and small scale software but these few can help us see a picture of this reality. So the

main point here we can see through a number of questions:

How to extend the traditional methods (Code-based) in a long-lived architecture to

deliver these new businesses? And how to provide an effective integration with

6�
�

legacy systems? How much change is needed to incorporate these requirements?

How long will this process take? If there is new features needed to be added is it

easier to add them? If a decision is made to change technology (acquiring new

quality such as security and performance) is the design easily adaptable? And so on.

MDA is a new development trend intended to make it possible to develop

applications in established domains without writing program code. It considers

models as first class objects, where the development process is driven by models.

Using UML or MOF language (is a subset of UML and new standard language has

more specification power), the business functionality is specified with business

concepts at a high abstraction level. This application-oriented language is called

platform independent model (PIM). Because we have an established code base that

implements large classes of applications, such as relational databases, a MOF model

is developed for the application program interface (API) of that code base. This

model of API called a platform specific model (PSM) of which there might be more

than one. The mapping between business-oriented modeling language and the code

base API is established by using a MOF-based tool like Query View Transform

(QVT). The result of the mapping is that the business specification will be

transformed into calls into the code base that execute it.

The PIMs and PSMs are developed independent of specific applications, and

mappings are also specified independent of PIM or PSM so that they form the assets

in the software re-using discipline. Therefore, since the application has been

specified, the code is generated automatically thereby leveraging the investment in

model assets.

MDA is enabled by models that can be formalized and which are machine

readable. Formalization means removing ambiguity with well-defined syntax and

semantics. This is the foundation for automation, the ultimate goal.

7�
�

MDA is intended to be delivered by languages (programming languages) in

software engineering, so it has been recognized in the community (this is discussed

at length in Chapter 4). As is said :

“ Software language should indeed be considered as a single coin but with two sides:

one side for the machine and the other for the software engineers” (Favre et al., 2009).

In fact many languages are needed in the software production life cycle for

different purposes, such as specification, testing, constraints etc. Therefore a family

of languages currently is needed to be provided in the development environment.

The value of having a common language besides the clarity, reusability, and

efficiency of its execution, is a standardized process offering an additional safeguard

against miscommunication and waste (Rasmussen and Niles, 2007).

From these points we conclude that a software system becomes an

information system in itself where different assets and artifacts need to be properly

managed with capability of mappings between models, synchronization and

production of code. More importantly while integrating artifacts during product-life

cycle re-use of these assets should be provided. To this end, MDA has followed the

information system technology to afford these capabilities.

It was recognized that to make MDA possible would require the development

and delivery of a number of modeling and model-manipulation tools. OMG has

crafted already some of them as specifications implemented in a number of products,

the Meta-Object Facility (MOF), UML, and others. These specifications undergo

continuing improvement resulting in MOF 2 (OMG, 2006a), UML 2 (OMG,

2007b).It was recognized that a number of new specifications needed to be

formulated and agreed, including Object Constraint Language (OCL) (OMG, 2006b)

XML Metadata Interchange (XMI) (OMG, 2003a) and Query/View/Transformation

(QVT) (Steinberg et al., 2008), among others. In addition, toolset of platforms are

8�
�

needed, some of which available as open source like the Eclipse Modeling

Framework (EMF) (Czarnecki and Helsen, 2003) while others are commercially

provided by vendors, like IBM MDA products.

 1.3 Problem Statement

Previous responses in the context of MDA focus on filling the components

and infrastructure gap such as the transformation languages (i.e. QVT, explained in

Chapter 4 (Czarnecki and Helsen, 2003) and toolset to automate the mapping process

and support of CASE tools (Frankel, 2003) . A few attempts were found describes

how to fulfil the gap of end to end engineering which afford developing applications

entirely from specification to implementation without writing code. Finding a

concrete mapping methods under MDA principles is still a research question. This

the fact that although the framework is established by OMG but still how it is to be

operationalized is left unspecified, subject to research and experiences of practice.

Therefore the questions tackled by this thesis are:

1) How can automation be accomplished in an end to end development of

software from specification to implementation?

2) How variability can be incorporated in the end to end software

development?

The concept of variability has emerged in the domain engineering whereby

software artifacts can be customized or adapted to produce different sort of kinds.

There is of variability that exists on a specific domain and/or the mappings itself.

This variability can be classified mainly into structural and behavioral. The former

gives different implementation alternatives while the latter gives different process

execution paths. For example inheritance representation in the relational model

follows structures (i.e. two-tables approach, single-table approach as discussed in

Chapter 7,8). An example of behavioral variability is a database transaction, of which

9�
�

there are several kinds, including two-phase commit transaction and the familiar

database transaction. The former has an overhead process to achieve reliability and

consistency though it has a different process flow.

Recently the relationship between software product line and MDA has been

studied. They share a body of knowledge which would help guide us in solving the

problem at hand, under the general observation they are working under the umbrella

of re-using.

The functional requirements are that what system should perform. Non-

functional requirements specify overall characteristics such as cost and reliability.

This should be contrasted with functional requirements as defined in requirements

engineering, which specify particular behaviors of a system. For example, displaying

the number of records in database is functional but how it will be kept up-to-date is

NFR. NFRs are hard to measure and determine. The representation and

categorization of NFRs shows diversity in terminology and orientation (Matinlassi,

2006). Another example of NFRs is the number of transaction for a specific table in

schema. The sort of NFRs relating to architecture is known as quality attributes.

The influence of the quality attributes in software design as a major

development cost is recognized in the research recently such as (Zhu and Ian, 2007)

(Korherr, 2007) . Modeling these nonfunctional requirements in software architecture

design is still under research. Nonfunctional requirements are critical, but they are

difficult to specify, model and categorize. Sometimes they conflict with each other.

They also sometimes overlap. NFRs by their nature sometimes affect functionality

and because of this it is difficult to NFR and functional requirements. Generally this

field is considered among a less developed one.

Furthermore, the relationship between nonfunctional requirements and design

decisions under MDA principles has not been fully addressed. To our knowledge this

10�
�

thesis is the first direct attempt. It is not recognized how could be represent

explicitly, and how to resolve conflicts at some times NFRs contribute to design

decision but it can be in conflict with them at another time. A few attempt was done

at the level of software architecture such as in (Bass et al., 2003)(Booch, 1991).

In fact, MDA structure more or less contributes to the addressing of NFRs in

its models while also allowing generalization of design decisions. For example,

portability and re usability is inherited from the separation of concerns concept.

Separation of concerns means having a conceptual model view and implementation

view separated from each other. In addition, built in mechanisms of extension and

specialization such as Profile and OCL, and the MOF metamodel can allow us to

develop a dialect or family of languages to add any kind of information either to PIM

or PSM, for example NFRs or general design decisions.

As a response to these issues E2EDE has emerged as an effective software

development method aimed at automating the craft of code using MDA. MDA

adopts abstract computation in which the functionality of the system is specified in

PIM metamodel, for example UML class model, and the implementation interfaces

for existing bodies of code is specified as PSM metamodels using MOF-based

language. MDA is used to map the specification end to the implementation end using

a transformation language (model-to-model) such as QVT and eventually to the code

(model-to-text). The mapping process which routinely occurs is expected to be done

automatically at the model instance level.

Finally, MDA is a young discipline so still there is a question on how to

develop a program in this context. In particular, E2EDE is about filling the mapping

gap between PIM and PSM.

11�
�

1.4 Objective

This research gives an answer to the research question by providing a model

for E2EDE automation. The objective of the research:

� To model Variability in PSM

� To model Non-functional requirements in PIM

� To establish a suitable representation for variability, Non-functional

requirements and mappings

The proposed model involves a number of activities in E2EDE enabling the

transformation process.

Two case studies are selected to evaluate the model. The first is intended to

understand nonfunctional requirements better while the second is for variability

aspects. Generally two common domains in industry and academia are investigated

by the two case studies.

 1.5 The Research Scope

The E2EDE engineering is intended to provide generic design decisions from

implementation space point of view for End-to-End program development. The

alternatives for design decisions in the PSM are the main interest. In fact E2EDE can

be used for two arbitrary ends such as mapping Object model (PIM) to relational

model (PSM). The approach basically considers nonfunctional requirements as

guidance to the selection of design decisions that help construct the PSM model

instance. Therefore the research focuses on a family of applications with variability

in implementation aspects affected by nonfunctional requirements. Therefore it

12�
�

considers the body of variability knowledge relevant to that problem, for example the

type of variability explicit to the PSM. In addition, mapping variability is also an

important aspect of E2EDE.

Because our concern is on specification to implementation under the MDA

context this research study does not include the second part of MDA from

implementation to physical code which is a different class of problems. Our study

assumes that the PSM is an interface to an existing body of code.

1.6 Contributions

The principal contribution of this work is an End to End Development

engineering methodology for realizing the generating of implementation models

from specification models automatically. This is contributing to the mapping gap

from PIM to PSM in MDA. This will give an answer to the question of how to write

a program in MDA.

Practically this study will generate concrete products contributing to the

MDA context such as Profiles, metamodels. Concretely, the technical knowledge and

guidelines is presented for two common domains (Chapters 7 and 8).

The following is a summary of the thesis contributions:

1. An explicit representation of variability in design decisions at PSM

metamodel

Chapter 5 motivates the need for inclusion of an activity to specify design

decision visibilities in E2EDE software development process. Design choices that

13�
�

expose different qualities are identified and represented using a context free

language. This presented in Chapter 7.

Documenting design visibilities provides a systematic way for representing

PSM’s construct alternatives so contributing basically to the mapping process.

This study has proposed a variability analysis where a classification is proposed,

called nonfunctional variability, which is discussed in Chapter 7. In addition,

classification from literature are behavioral and structural.

A secondary benefit is to focus early on software quality as this becomes a

critical point for most of the current software systems. This is especially critical in

ultra-large systems and with the increasingly common situation of technology

variability that rapidly changes because of enhancing functionality (e.g. presenting

an application on multiple platforms) or concern with nonfunctional aspects (i.e.

Google Chrome).

To this end, software architect with contributions 1 and 2 can tell about

specific model elements and reason about software architecture thereby rationality is

supported.

2.An explicit representation for Nonfunctional requirements at PIM metamodel

that can guide the selection of alternative transformations and a high quality

design artifact represented by PSM metamodel.

Chapter 7 studies nonfunctional requirements to be specified in the

conceptual model in an E2EDE software development process, which considers

representation and prioritization of NFRs. But before that Chapter 6 presents a

background from literature on how nonfunctional requirements are treated, including

14�
�

definitions, identification, classification and their relationship with functional

aspects.

A profile is presented in Chapter 7 as a formal technique for modeling NFRs

at PIM metamodel. This technique is a lightweight approach (i.e. profile) of

extension to the UML metamodel. This consideration of NFRs early will facilitate

the mapping automation between PIM and PSM, but at the same time adds value for

selection among alternatives of transformation strategy (mapping variability), which

will be based on the desired quality properties of the resulting model.

A new classification is identified by this study to NFRs, namely Package

level and class level. Both are discussed in Chapters 7 and 8.

However this technique provides the software engineer with a means for

explicit description and reasoning about alternative deigns and transformations so

that the software engineer is able to identify the transformations that produce a result

with certain quality properties.

A context free language for NFRs using UML profile is presented as solution

in chapter 7.

3. Mapping variability and a metamodel for its representation

In Chapter 2 mapping is studied and considered in the broader context of

Model Driven Engineering. The details include the meaning of mapping variability

15�
�

and how it can fit in development lifecycle. The study includes a different approach

to the implementation of transformation languages such as QVT.

The mappings variability is first introduced in Chapter 7 then in Chapter 8 is

exemplified through case study the formulation of requirements that E2EDE must

fulfill to provide an adequate support for end to end engineering. An Object model to

Relational Model is given as example which also helps show mapping variability.

A dialect for variability is developed in Chapter 7 using MOF profile.

4. A package, profile representation and model manipulation as a mechanism

for implementing E2EDE.

Chapter 7 presents a discussion of a practical approach toward implementing

E2EDE. Current techniques to implement MDA are based on EMOF, XMI and QVT

tools for editing, rendering and mapping metamodel. We propose in this approach a

UML package mechanism and profile representation that can be manipulated easily

by metaprograms. However, we present a general model for practical solution under

E2EDE principles so it can easily be extended into a working system.

This approach overcomes problems experienced in extracting NFR from PIM

metamodel where NFR instances are specified at different abstraction levels,

resolving the conflict between Package level NFR and Class level NFRs through

priority mechanism and aggregating related NFRs or variation points by introducing

a Guard predicate. Finally it presents a method to select suitable PSM variants at

variation points using NFR instances in the PIM.

16�
�

5. A strategic standard PSM for Messaging systems.

The realistic nature of our approach, especially the generation of standard

PSMs for existing current platforms is discussed in Chapter 8. Also we discuss the

issue of the ability of re-using PIM and PSM and mappings if they reach stability

with their new kind of knowledge of NFRs and variability. We have investigated a

number of applications under a messaging system domain. The result was a PSM

metamodel developed that can be re-used to produce different products in that

domain. This is presented in Chapter 7. Of course more refinement to this

standardized PSM is needed to complete it. The value of re-use in the software

development is studied in Chapter 2 and Chapter 8.

1.7 Outline of the thesis

Chapter 1 and 2 provide an introduction to both thesis and review of

literature. While Chapter is intended to expose explicitly the research method

adopted in this thesis.

Chapter 4 provides a model driven architecture framework and the state-of-

the-art to put E2EDE in context. It starts out by the concept of raising abstraction

level and re-use and tracing that back in computing history. Then important concepts

and terminology that are necessary to understand MDA are introduced. The

important MDA mechanisms and technologies such as MOF are explained and

demonstrated by examples. Finally the design tradeoffs between the two common

extension mechanisms in MDA: Profile and metamodel, which are needed in chapter

7 and 8, are clarified. QVT standard mapping language is introduced. It starts with

example of mapping. It discusses why languages generally are a new trend in the

software community. After that, more technical details are give about QVT such as

17�
�

part of its essential abstract syntax and concrete syntax based on the OMG QVT

standard with examples In addition, it identifies the input, output and how it looks

like. It concludes with exposing anatomy of how MDA works and defines the art

behind that.

Chapter 5 describes the Software product line as major competitive re-using

approach to MDA by introducing its main concepts. The domain engineering concept

has been given more concentration because it is the key idea behind software product

line. To this end, the variability management mechanisms which realize the software

product line are provided. After that, it investigates the relationship between MDA

and software product line and how MDA can fit in software product line. At the end

it presents taxonomy of variability and the body of knowledge making variability

applicable in the MDA context is canvassed.

Chapter 6 explains a second re-using approach, Design pattern, by describing

the main concepts and pattern life cycle. It then presents comparisons between MDA

and Design pattern and how MDA can fit into Design pattern. Finally it deals with

nonfunctional requirements which was observed embedded with design pattern

alternative discussion. A nonfunctional requirement is an important concept to an

E2EDE so it is applicability in the MDA context is presented at the end.

Chapter 7 describes the basic contribution, the idea of the E2EDE approach.

The design issues are an important component so are introduced first. This includes

the demonstration of developing two profiles, one for nonfunctional requirements

and the other for variability. Then the implementation aspect of E2EDE is explained.

To this end metamodels as a solution is presented. Finally representation

mechanisms and programs necessary to implement E2EDE are presented at the end

of the chapter.

Chapter 8 presents two case studies, one from the messaging system domain

and the other from the database domain. In both studies, the problem specification is

18�
�

introduced first and then the details of applying the concepts of chapter 7. Finally it

discusses and comments on the result of evaluation done by these experiments. More

important the discussion focuses on the big picture of E2EDE applicability including

how realistic it is to have standard PSM and what extended re-usability could be

achieved and under what conditions.

Chapter 9 concludes the thesis by summarizing it and discussing the

limitations and drawing out some points for future research.

�

