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ABSTRACT 

 
 
 

Active suspension control aims to suppress the undesirable vibration and 

other loading effects and should provide improvements in term of passenger comfort. 

This study deals with the design and implementation of robust active force control 

(AFC)-based schemes that incorporates artificial intelligence techniques plus a 

number of feedback control strategies applied to a vehicle suspension system. The 

overall proposed control system essentially comprises four feedback control loops, 

namely, an innermost loop for force tracking of the pneumatic actuator using a 

proportional-integral controller, two intermediate loops applying the skyhook and 

AFC strategy for the compensation of the disturbances and an outermost loop for the 

computation of the desired force for the actuator using a proportional-integral-

derivative controller. Adaptive neural network and adaptive fuzzy were proposed and 

employed to compute the inverse dynamics of the nonlinear pneumatic actuator and 

estimated mass of the system within the AFC loop. The integration of all the 

interrelated elements leads to the formation of two main proposed schemes known as 

the Skyhook Adaptive Fuzzy Active Force Control and Skyhook Adaptive Neuro 

Active Force Control. The suspension system was modelled based on a two degree-

of-freedom quarter car configuration. A number of road profiles were also modelled 

as the main disturbance elements to evaluate the system robustness and vehicle 

dynamic performance related to ride comfort. Simulation results both in time and 

frequency domains demonstrate the effectiveness of the proposed AFC-based 

schemes in countering the disturbances and other loading conditions. The schemes 

show evidence of at least 33.9% improvement in performance over the passive 

suspension. This is complemented by an experimental study on a developed full scale 

quarter car suspension test rig which shows a very good agreement with the 

simulation counterpart.  
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ABSTRAK 

 
 
 

Kawalan ampaian aktif bertujuan untuk mengurangkan kesan getaran dan 

bebanan yang tidak dikehendaki dan seharusnya dapat memperbaiki kriteria 

keselesaan penumpang. Penyelidikan ini mengkaji reka bentuk dan pelaksanaan skim 

lasak terhadap satu sistem ampaian kenderaan berasaskan Kawalan Daya Aktif 

(AFC) yang memuatkan teknik Kepintaran Buatan dan beberapa strategi kawalan 

bersuap balik. Sistem kawalan keseluruhan yang dicadangkan merangkumi empat 

gelung kawalan bersuap balik, iaitu satu gelung terkedalam untuk tujuan penjejakan 

daya penggerak pneumatik menggunakan pengawal berkadaran-kamiran, dua gelung 

antara menggunakan strategi Skyhook dan AFC untuk memampas daya gangguan 

dan satu gelung pada kedudukan paling luar untuk mengira daya yang diperlukan 

oleh penggerak menggunakan pengawal berkadaran-kamiran-terbitan.  Rangkaian 

Neural Adaptif dan Logik Kabur Adaptif telah dicadangkan dan diguna untuk 

mendapatkan dinamik songsang bagi penggerak pneumatik tak linar dan juga jisim 

anggaran sistem dalam gelung AFC. Kesepaduan kesemua unsur yang berkaitan 

menghasilkan dua skim utama yang dikenali sebagai Kawalan Daya Aktif Logik 

Kabur Adaptif Skyhook dan Kawalan Daya Aktif Neuro Adaptive Skyhook. Sistem 

ampaian dimodel berasaskan tatarajah kenderaan sukuan yang mempunyai dua 

darjah kebebasan. Beberapa profil jalan juga dimodel sebagai unsur gangguan utama 

bagi menilai kelasakan sistem dan juga prestasi dinamik kenderaan berkaitan dengan 

keselesaan tunggangan dan pengelolaan jalan. Hasil penyelakuan menunjukkan 

keberkesanan skim cadangan berasaskan-AFC dalam menghadapi gangguan dan 

keadaan bebanan lain. Skim juga mempamerkan sekurang-kurangnya 33.9% 

pembaikan prestasi tercapai jika dibandingkan dengan ampaian pasif. Ini 

diperkuatkan oleh penghasilan kajian ujikaji terhadap suatu rig ujikaji ampaian 

kenderaan sukuan berskala penuh yang menunjukkan keserasian yang baik dengan 

keputusan yang diperoleh melalui penyelakuan.  
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 

 

1.1 Introduction 

 

A suspension system is one of the essential components of any vehicle that 

carries passenger in its body compartment. It is primarily used to provide the 

absorption and/or isolation of undesirable vibration and load in the event the vehicle 

travels on a rough road, thereby, providing some comfort to the passenger in the 

vehicle (Ellis, 1994). Most vehicle suspension systems are typically made-up of a 

spring and a shock absorber. When a car hits a bump or a hole, the spring is used to 

temporarily store the energy generated by the disturbance force and resist the motion 

that tends to change the car body height level. The shock absorber acts to quickly 

dissipate the energy stored in the spring and damp out the vibration. Without the 

shock absorber, the spring will cause the vehicle to vibrate continuously over a 

certain period of time after the tyre passes over a bump or a hole. Darling and Dorey 

(1992); Ellis (1994) outlined the requirements for a suspension system as follows: 

1. Isolate the passenger from the road irregularities (ride) 

2. Maintain contact between the tyre and the road 

3. Provide safe handling during manoeuvres 

4. React to changes in the load 

5. Contain the suspension displacements within the limits of travel 

6. Provide control over the pitch and roll motion of the vehicle body. 

Thus, it can be deduced that the purpose of a suspension system is to minimize the 

undesired motions during driving (Darling and Dorey, 1992). 

 

 

 

 



2 

1.2 Research Background 

 

 The main idea of a suspension system is to absorb the shock caused by the 

irregularities on a road surface. Ideally, the suspension should isolate the body from 

road and inertial disturbances that are typically associated with the acts of cornering 

and braking or acceleration. In addition, the suspension must also be able to 

minimize the vertical force transmitted to the passengers of the vehicle for their 

comfort. This objective can be directly achieved by minimizing the vertical car body 

acceleration. In any vehicle suspension system, there are a number of performance 

parameters that need to be optimized to achieve acceptable specification and 

compromise in ride comfort performance. In literature, the important parameters are 

(Gaoa et al., 2006; Gillespie, 1992; Wong, 2001): 

1. Body acceleration  

Ride comfort is related to the acceleration sensed by passenger in the 

vehicle when passing over a rough road surface. It is well-known that ride 

comfort is an important performance specification for vehicle design, 

which is typically evaluated by the body acceleration in the vertical 

direction. Therefore, one of the main objectives in controller design is to 

minimize the vertical body acceleration. 

2. Tyre deflection 

Tyre deflection can be attributed to the contact between the tyre and road 

surface. In order to ensure a firm uninterrupted contact of the wheels to 

the road surface, the dynamic tyre load should not exceed the static ones, 

that is, 

 

)(8.9)( usrut mmzzk +<−      (1.1) 

 

where ms, mu, kt, zs, zu, are the sprung mass, unsprung mass, tyre stiffness, 

displacement of the sprung mass, displacement of unsprung mass, 

respectively.  

3. Suspension deflection  

It refers to the relative displacement between the sprung mass (body) and 

the unsprung mass (wheel). Because of the mechanical structure 
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constraint, the maximum allowable suspension stroke should be taken 

into consideration to avoid excessive suspension bottoming, which can 

possibly result in deterioration of the ride comfort and even structural 

damage. 

4. Actuator saturation 

Saturation effect of actuator should be taken into account in view of the 

limited power of the actuator, implying that the active force for the 

suspension system should be confined to a certain range, that is, 

 

maxuu ≤         (1.2) 

 

where u is the active force input of the suspension system. 

 

It is well-known fact that improving the ride quality has always been one of 

the objectives of vehicle manufacturers. When designing a standard passive 

suspension system, the trade-offs mentioned above is made upfront (fixed) 

depending on the types of applications and cannot be easily changed. To overcome 

this seemingly complex problem, many researchers have studied, proposed and 

implemented various semi-active and active vehicle suspension systems both 

theoretically as well experimentally (Appleyard and Wellstead, 1995). 

  

In the case of semi-active and active suspension systems, the trade-off 

decisions can be usually changed in real-time as the system is in operation. A semi-

active suspension has the ability to change the damping characteristics of the shock 

absorbers as in an electro-rheological or magneto-rheological damper. In an active 

suspension system, a pneumatic or a hydraulic actuator is typically attached in 

parallel with both a spring and a shock absorber in between the sprung and unsprung 

masses. The main advantage of employing an active suspension is the associated 

adaptation potential the system has where the suspension characteristic can be 

adjusted in real-time while driving to match the profile of the road being traversed 

(Cherry and Jones, 1995).  
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The use of pneumatic actuator as an active suspension device is a relatively 

new concept and has not been thoroughly explored. Pneumatic actuators demonstrate 

highly nonlinear characteristics due to the compressibility of air, friction and the 

nonlinearity of the valves. Thus, they are traditionally used for simple position and 

speed control applications in industry, automation, being a prime example. In recent 

years, low cost microprocessors (microcontrollers) and pneumatic components are 

available which make it possible to adopt a more complex control strategy in 

pneumatic actuator system control (Wang et al., 2001). Hence, investigations have 

been carried out, employing pneumatic actuators to accomplish a large number of 

motion control tasks.  

 

The intent of the study is an attempt to introduce a new robust control 

strategy of a suspension system that is based on active force control (AFC) approach. 

The AFC has been recognized to be simple, robust and effective compared with 

conventional methods in controlling dynamical systems, both in theory as well as 

practice (Hewit and Burdess, 1981; Mailah, 1998; Kwek et al., 2003; Mailah et al., 

2005). Thus, the research shall explore the possibility of improving the vehicle 

suspension dynamic performance using an integrated robust control strategy 

incorporating intelligent method. The main works of this study include the design of 

the proposed controller based on a number of established control models, choice of 

actuator system, AI technique and a number of loading conditions. The research is 

performed, first through a numerical technique in the form of a rigorous computer 

simulation and later, complemented by an experimental implementation of the 

proposed control scheme on a physical quarter car suspension test rig. A quarter car 

model is chosen as the main model to investigate the effectiveness of the active 

suspension system due to the simplicity of the model and yet can capture many 

important characteristics of the full model (Fischer and Isermann, 2004). Finally, 

performance evaluation both in time and frequency domains is conducted to 

scrutinize the potential benefits of the proposed active suspension system. 
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1.3 Problem Statements  

 

The idea of AFC is first coined by Hewit and Burdess (1981). The goal of 

this control scheme is to ensure that a system remains stable and robust even in the 

presence of disturbances. The underlying principle of AFC involves direct 

measurement and estimation of a number of identified parameters to predict its 

compensation action namely the actuated force, vertical body acceleration and 

estimated mass of the body. The main computational burden in AFC is the 

multiplication of the estimated mass of the body with the acceleration of the body. 

Many control approaches using a simple gain of the actuator have been investigated 

to obtain the appropriate estimated mass of the body (Mailah and Rahim, 2000; 

Hussein et al., 2000; Kwek et al., 2003; Mailah et al., 2005). Another problem is 

associated with acquiring inverse dynamic of the pneumatic actuator as shown in 

Figure 1.1. The signal values Df
′ must be multiplied by inverse dynamic of the 

pneumatic actuator before being fed into the AFC feed-forward loop. Thus, a suitable 

method to obtain the inverse dynamics of the pneumatic actuator and estimated mass 

of the body in the AFC scheme should be appropriately acquired to provide 

maximum disturbance compensation of the control strategy.  

 

Actuator Active
Suspension

+

Estimated mass
of the body

+ -

Actuator-1

Active Force Control (AFC)

Disturbance
(Road Profile)

F

Desired
Force

force sensor accelerometer

'fD

sz&&
+

+
+

'sz&&'F

 
Figure 1.1 AFC concept applied to an active suspension system 

 

The pneumatic actuator of an active suspension system should be able to 

provide an accurate desired force to match with the different road disturbances. 

Taking into account the nonlinearities and uncertainties which inherently exist in the 
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vehicle system for active suspension design, a new control strategy is proposed in the 

undertaken research using a combined and integrated control scheme. The scheme 

should exhibit practical viability based on the theoretical framework and sufficient 

robustness in the wake of a number of introduced disturbances, nonlinearities and 

uncertainties. The proposed control system essentially comprises four feedback 

control loops, namely the innermost loop for the force tracking control of the 

pneumatic actuator using a PI controller, the intermediate loops applying skyhook 

and AFC strategy to reduce disturbances and the outermost loop for the computation 

of the desired force using the PID controller. Artificial intelligence (AI) method shall 

be incorporated and embedded into the system to enhance the system performance.  

 

 

1.4 Objectives and Scope of the Research 

 

The main objectives of this research are stated as follows:  

1. To design and analyse the implementation of adaptive fuzzy (AF) and 

neural network (NN) methods in the computation of the inverse dynamics 

of the actuator and estimated mass parameter in the AFC scheme to 

improve the ride performance of the active suspension system by 

simulation study. 

2. To evaluate and validate the performance of an AFC-based controller for 

the active suspension system through an experimental study.  

 

The scope of this research covers the followings: 

1. A two degree-of-freedom (DOF) quarter car suspension model is 

considered. It is assumed that there is no slipping between the tyre and 

road surface and only the vertical movement of the system is considered. 

The actuator used in the study is a nonlinear pneumatic type. 

2. The theoretical framework involves the study of various principles related 

to the AFC-based methods, proportional-integral-derivative (PID) control, 

skyhook method, the adaptive neural network (NN) and the adaptive 

fuzzy (AF) techniques. 

3. The performance of the suspension system subjected to various road 

profiles is evaluated based on vertical sprung mass acceleration, 
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suspension deflection and tyre deflection. In addition, the sprung mass 

displacement parameter is also considered for useful observation. The 

effect of load variation pertaining to the sprung mass is also investigated. 

Results shall be presented and analysed both in time and frequency 

domains. 

4. The parameters of both quarter car model and quarter car test rig are 

selected based on a Malaysian National car, namely, the Kelisa. 

5. An experimental quarter car suspension test rig shall be designed and 

developed to verify a selected proposed control scheme through a 

hardware-in-the-loop simulation (HILS).  

 

 

1.5 Research Contributions 

 

 The main research contributions from this study are as follows: 

1. Two new robust AFC-based control schemes were proposed, designed 

and implemented for the control of a vehicle suspension system using 

skyhook adaptive neuro active force control scheme (SANAFC) and 

skyhook adaptive fuzzy active force control (SAFAFC).  

2. New approximation methods that could make decision to compute 

continuously and adaptively the appropriate estimated mass of the AFC 

strategy of the active suspension in order to improve the performance 

were employed using adaptive NN and AF techniques. 

3. New approximation methods to identify the inverse dynamics of the 

pneumatic actuator in the AFC strategy using the adaptive NN and AF 

schemes were proposed and implemented. 

4. A quarter car test rig with instrumented experimental system has been 

developed in the laboratory for experimental evaluation and verification 

of the theoretical element. A HILS configuration is particularly 

highlighted. 
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1.6 Organization of the Thesis 

 

 Chapter 2 presents the literature review on related subjects concerning this 

thesis. In this chapter, the classification of vehicle suspension system, performance 

index to be considered in suspension system design, properties of pneumatic 

actuator, review on recently published articles related to pneumatic active suspension 

control strategies and application of the active force control strategy are described.  

 

In Chapter 3, the methodology of the research is presented. This methodology 

is divided into a number of stages describing the corresponding tasks that need to be 

carried out plus the tools that are associated with them. Essentially, there are two 

main research activities to be accomplished, namely, the theoretical modelling and 

simulation of the suspension system and the practical implementation of the 

proposed methods for validation purpose.  

 

Chapter 4 describes the general introduction and principle of adaptive fuzzy 

system. Then, the simulation study of the new proposed scheme namely Skyhook 

Adaptive Fuzzy Active Force Control (SAFAFC) is presented.  The overall proposed 

control system essentially comprises of four feedback control loops, namely the 

innermost loop for force tracking of the pneumatic actuator performance using PI 

controller, intermediate loops applying skyhook and AFC strategy for compensation 

of the disturbances and outermost loop for the computation of the desired force using 

PID controller. The parameter gains of PID controller are determined using Ziegler-

Nichols method. Adaptive fuzzy (AF) with back-propagation (BP) training 

algorithms are used to approximate the inverse dynamic model of the pneumatic 

actuator and to approximate the estimated mass in the AFC loop. Performance of the 

suspension system is evaluated in terms of the sprung mass acceleration, sprung mass 

displacement, suspension deflection and tyre deflection, both in time and frequency 

domains. A measure of performance improvement has been included in this chapter 

to benchmark all the five control schemes considered in the study.  

 

Chapter 5 presents the simulation study of the new proposed scheme known 

as Skyhook Adaptive Neuro Active Force Control (SANAFC).  The structure of the 

proposed controller is almost similar to that given in Chapter 4 in which it also 
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consists of four feedback control loops, but in this case, adaptive neural networks 

(NN) are used to approximate the estimated mass and the inverse dynamics of the 

pneumatic actuator. The adaptive NN uses modified Levenberg-Marqurdt (LM) 

training algorithms. Performance of the suspension system is evaluated both in time 

and frequency domains. Finally, the results of the proposed scheme are presented and 

compared with those obtained using the SAFAFC method. 

 

Chapter 6 describes the design and development of the experimental quarter 

car suspension test rig that incorporates the proposed SANAFC scheme. Mechatronic 

system design approach is adopted to realize the suspension test rig prototype. The 

specifications of the active suspension system, PC-based controller and its 

instrumentation system are described at length with particular emphasis on the 

implementation of the HILS setting. The experimental results are presented both in 

time and frequency domains and a comparative study is made between the proposed 

SANAFC, PID controller and passive suspensions.  

 

Chapter 7 discusses the differences that can be highlighted between the 

simulation and experimental works that have been carried out in the research study. 

The issues associated with implementing intelligent active force control on a quarter 

car active suspension system using pneumatic actuator.  

 

Finally, Chapter 8 concludes the research project. The directions and 

recommendations for future research works are outlined. A list of publications 

related to the study, relevant results from both simulation and experimental studies 

are enclosed in the appendices. 

 

 

 




