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ABSTRACT 

 

 

 

In optimal design of thick-walled cylinder, there are two main objectives to 
be achieved, increasing its strength-to-weight ratio and extending its fatigue life. This 
can be achieved by generating a residual stress field in the cylinder wall prior to use, 
a process known as autofrettage. Two different cylindrical components are proposed 
in this study; a plain and a stepped thick-walled cylinders. They are modelled using 
two-dimensional axisymmetric elements, and analysed for optimisation of 
autofrettage pressure and fatigue life. A Finite Element (FE) Method using 
ABAQUS is carried out on the cylinders to develop a procedure in which the 
autofrettage process is determined numerically, resulting in a reduced maximum 
equivalent stress distribution. Cylindrical pressure vessels often have a fluctuating 
internal pressure load and can fail through fatigue. For this purpose a fatigue life 
evaluation of the cylinders is performed, using FE-SAFE, to evaluate the structural 
integrity of autofrettaged vessels. A technique for elastic-plastic analysis of thick-
walled cylinder under internal operating pressure is proposed where the performance 
of the cylinders is evaluated for different levels of autofrettage. The results reveal 
three scenarios in the design of thick-walled cylinders. For maximum load carrying 
capacity, non-autofrettage is suitable when, in service, the whole wall thickness will 
be yielded. Full autofrettage is suitable when, during subsequent operation, yielding 
is limited at the inner surface. Optimum autofrettage of the cylinder is suitable if a 
minimum equivalent stress is to be achieved. FE simulation shows that the effect of 
external step on the optimum autofrettage is not significant. Experiments are carried 
out to validate the numerical results of residual stress. There is a good agreement 
between the FE simulation and the strain measurements. In fatigue analysis, the 
fatigue life initially increases with autofrettage level, reaching a maximum optimum 
level and then decreases. The optimum autofrettage leads to an optimum fatigue life 
which is found to be about 3.24 times greater than non-autofrettaged cylinders. The 
analytical solutions are compared to numerical results and a very good correlation in 
form and magnitude is obtained. 
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ABSTRAK 

 

 

 

Dalam rekabentuk optimum silinder berdinding tebal, terdapat dua objektif 
utama yang perlu dicapai, iaitu menambah nisbah kekuatan terhadap berat dan 
melanjutkan jangka hayat lesunya. Ini dapat dicapai dengan mewujudkan medan 
tegasan baki dalam dinding silinder melalui proses ‘autofrettage’. Dua struktur 
silinder berbeza telah dicadangkan dalam kajian ini iaitu silinder biasa dan silinder 
bertangga. Struktur ini telah dimodelkan menggunakan elemen paksi simetrik dua 
dimensi dan telah dianalisiskan untuk tahap optimum tekanan ‘autofrettage’ dan 
jangka hayat lesunya. Perisian Kaedah Unsur Terhingga ABAQUS telah 
diaplikasikan ke atas silinder bagi membentuk prosedur di mana proses ‘autofrettage’ 
dibangunkan dari kaedah berangka, yang akan menghasilkan pengurangan agihan 
tegasan maksimum. Tabung tekanan berbentuk silinder selalunya mempunyai 
tekanan dalaman yang berkitar, dan boleh mengalami kegagalan lesu. Bagi tujuan 
ini, penilaian terhadap jangka hayat lesu silinder ditentukan dengan menggunakan 
FE-SAFE bagi menentukan keselamatan silinder yang telah di‘autofrettage’. Analisis 
elastik-plastik di bawah tekanan kerja telah dicadangkan, dimana prestasi silinder 
akan dinilai pada tahap ‘autofrettage’ yang berlainan. Hasil kajian menunjukkan tiga 
senario dalam rekabentuk silinder berdinding tebal. Untuk menampung tekanan yang 
paling tinggi, ketiadaan ’autofrettage’ adalah sesuai, di mana keseluruhan ketebalan 
dinding silinder mengalami alahan. ‘Autofrettage’ penuh sesuai apabila dalam 
penggunaan, alahan berlaku pada permukaan dalaman. Seterusnya, ‘autofrettage’ 
optimum sesuai digunakan apabila tegasan minimum diperlukan. Kaedah eksperimen 
telah dijalankan bagi mengesahkan hasil kaedah berangka tegasan baki. Terdapat 
hubungan baik di antara simulasi FE dan pengukuran terikan. Dalam analisis lesu, 
pada permulaan, jangka hayat lesu meningkat dengan peningkatan tahap 
‘autofrettage’, kemudian mencapai tahap optimum dan kemudiannya akan merosot. 
Tahap optimum ‘autofrettage’ membawa kepada jangka hayat lesu yang optimum 
dan kesan tangga keatas ‘autofrettage’ optimum adalah tidak signifikan. 
Penyelesaian analitikal dibandingkan dengan hasil kaedah berangka dan ianya 
mempunyai korelasi yang baik dari segi bentuk dan magnitud. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of The Problem 

As the economic and environmental push for conservation of raw materials 

and weight reduction of components continue, engineering design will continue to 

move towards strong and safer components with more efficient use of material 

strength. Due to the ever-increasing industrial demand for axisymmetric pressure 

vessels which have had wide applications in chemical, nuclear, fluid transmitting 

plants, power plant, pipeline, and military equipment, the attention of designers has 

been concentrated on this particular branch of engineering. The increasingly scarce 

material and higher cost have led researchers not to confine themselves to the 

customary elastic regime but attracted their attention to the elastic-plastic approach 

which offers more efficient use of material. 
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Analytical solutions of thick-walled cylinders become complicated because 

of the non-linear stress-strain relation. When a thick-walled cylinder is internally 

pressurised the internal surface is the most highly stressed part of the cylinder. With 

further increase in pressure, the inner surface begins to yield and the yield surface 

begins to propagate along the thickness of the vessel, until it reaches the outer 

surface. When the cylinder material is entering the plastic regime, the material begins 

to strain harden. When the weakening caused by yielding exceeds the strengthening 

caused by strain hardening, the cylinder will fail at the maximum ultimate pressure 

[1].  

Autofrettage is a plastic deformation process caused by imposing a very high 

internal pressure, resulting in compressive and tensile hoop residual stresses at the 

inside and outside surfaces of the cylinder, respectively. These result in increased 

load carrying capacity, gross resistance to fatigue and inhibit the rate of crack 

propagation [2]. The autofrettage process introduces favourable residual compressive 

stresses in the region of expected high tensile stresses. This process has allowed a 

higher service pressure in the vessel and has decreased cylinder susceptibility to 

inner surface cracking.  

Residual stresses are defined as stresses that exist within a body in the 

absence of external loading. Such stresses are the result of a field of inhomogeneous 

strains within the body. The elastic constraints of material surrounding the 

inhomogeneous strain leads to the residual stress field within the body and geometric 

changes in the body are necessitated by the requirements of force equilibrium. There 

are numerous methods of introducing residual stress into mechanical component; 

they include shot peening; interference fit fastening, low plasticity burnishing, laser 

shock peening, tensile overloading, cold expansion, and autofrettage. It is well 

known that autofrettage process creates residual stresses in the wall of thick 

cylinders. Depending upon their nature, these residual stresses can have significant 

effects upon cylinder life by influencing fatigue, creep, and stress corrosion cracking 

resistance. On the other hand, autofrettage induced residual stresses can have 

detrimental effects upon thick-walled cylinders because autofrettage process reduce 

the maximum internal pressure to cause the whole wall thickness of cylinder to yield. 

Thus, it is of significant industrial importance to predict the nature of autofrettage 



3

induced residual stresses in a cylinder, based upon the autofrettage pressurised 

conditions and material behaviours [3] 

Fatigue is the source of at least half of all mechanical failures [4]. Fatigue 

problem is complex and not fully understood, but it is very important in the design of 

mechanical systems. Fatigue is especially of interest to the pressurised equipment 

industry.  For cylinders that are designed to operate at the envelope of strength, those 

that experience cyclic loading, in an aggressive atmosphere or any combination of 

these, autofrettage induced residual stresses can have profound effects by limiting 

fatigue failure. Fatigue cracks generally form and propagate at the inner surface of a 

thick-walled cylinder subjected to cyclic internal operating pressure, where the 

maximum tensile hoop stress occurs.  

The cylindrical vessel part usually has a fluctuating internal operating 

pressure load and may fail by fatigue loads. Many studies have investigated plain 

thick-walled cylinders based on the minimization of maximum stress to improve the 

cylinder lifetime. In this study, an autofrettage process technique is developed to 

obtain optimum stress redistribution under fatigue loads. 

1.2 Pressure Vessel Technology 

The origin of high pressure technology can be traced back to the fourteenth 

century when the first known cannons were invented. Today, high pressure 

technology has developed from early basic science to major applications that have 

driven the technology. The advances of high pressure technology were based on the 

theoretical understanding of thick-walled cylinder subjected to internal pressure. 

Thick-walled cylinders subjected to high internal operating pressure are widely used 

in various industries. In general, vessels under high internal require a strict analysis 

for an optimum design for reliable and secure operational performance. Efforts have 
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been continually made to obtain a thorough understanding of the behaviour of the 

pressurized thick-walled cylinder and to increase reliability of design. 

 Pressure vessels and thick-walled cylinders are one of the most important and 

expensive engineering components. Their usage ranges from simple design air 

bottles and liquid petroleum gas (LPG) to highly sophisticated designs of   artillery 

gun barrels, ballistic missiles and nuclear reactors. Safety consideration is an 

important issue and during designing and manufacturing of these parts, quality must 

be assured. To accomplish this, proof pressure, non-destructive inspection, 

destructive testing, modelling and simulation techniques are extensively used [5]. 

Failure analysis and failure prevention are important functions in all 

engineering disciplines. The materials engineer often plays a lead role in the analysis 

of failures, whether a component or product fails in service or if failure occurs in 

manufacturing or during production processing. One must determine the cause of 

failure to prevent future occurrence, and to improve the performance of the 

component or structure. Nowadays, designers are demanding for high quality with 

low cost, more importantly, a product with high reliability and safety to reduce the 

warranty cost. Therefore, improving the limits of safety and reliability of pressurized 

components is an important challenge for pressure vessel designer. The human cost 

of failed structures has been documented throughout history by accidents ranging 

from airline disasters to catastrophic bridge and building collapse. 

Design optimization using only a sizing design variable is fairly 

straightforward to implement: the shape of the structure remains unchanged so that 

no refinement or modification is required for the finite element geometry model. As 

a consequence, it is easy in this case, to implement design sensitivity analysis. 

However, there exists an important class of structural design problems in which the 

shape of the structure has to be determined. Most engineering components contain 

discontinuities in their geometric features. These cross-sectional changes appear in 

many forms such as fillets, threads, holes and steps. These notches are locations 

where high localized stresses and associated strains are induced and therefore their 

effects, in the form of stress or strain concentrations, must be considered in the 
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design assessment of these components, especially when subjected to variable or 

cyclic loading. 

A few published studies have examined the boundary shape of two-

dimensional plane problems and very little work has been published about shape 

effect of axisymmetric thick-walled cylinder under the action of internal pressure [6, 

7, and 8]. The aim of the present study is to determine the increase in the load-

carrying capacity and fatigue life which could potentially be achieved in nonstandard 

pressure cylinder geometries. The results described here contribute to a better 

understanding of the role geometric discontinues play in reducing the strength of 

autofrettaged pressurized stepped thick-wall cylinders. Further, this research opens 

up investigation on the optimization of autofrettage pressure in cylindrical-shaped 

vessels based on load-carrying capacity. In this study, a procedure for optimizing the 

performance of plain autofrettaged axisymmetric pressurized thick-walled cylinders 

with respect to stress re-distribution in critical stepped area is described using the 

numerical computer simulation analysis packages ABAQUS, and FE-SAFE.  

In the design and analysis of components, it has become increasingly 

important to develop methods that are less sophisticated, more understandable, and 

easy to apply, but adequately accurate. Design of components such as high pressure 

thick-walled cylinder in mechanical and general industries requires elastic-plastic 

analysis. One reason for this is the need to accurately predict residual stresses. 

Compressive residual stresses in many applications such as autofrettage of cylinders, 

apart from increasing the pressure capacity of the component, enhance the 

component fatigue life. The presence of these beneficial residual stresses reduces the 

probability of crack initiation and slows the growth of fatigue cracks. 

The theory of plasticity is not fully exploited by practicing engineers because 

of the difficulties in applying these mathematically sophisticated techniques. Usually 

it takes considerable effort to understand and implement techniques for plastic 

analysis. In most cases, industries are not convinced of the resulting economy and 

hence consider such analysis unaffordable. Alternative methods of elastic-plastic 

analysis have attracted special attention recently. These methods provide simpler 
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techniques to approximate the elastic-plastic behaviour of components and therefore 

are more attractive to practicing engineers. 

1.3 Problem Identification and Objectives 

Industrial pressure vessels are usually structures with complex geometry 

containing numerous geometrical discontinuities and are often required to perform 

under complex loading conditions such as internal pressure, external force, and 

thermal load. Cylinders subjected to high internal pressure are widely used as 

elements of many important constructions. Optimization has become a significant 

area of development, both in research and practice, in mechanical and structural 

design. The growing importance of residual stresses in thick-walled cylinders 

demands an understanding of the autofrettage process and the development of 

serviceable model for the prediction of autofrettage-induced residual stresses from 

conventional processes such as pressurizing. 

The main objective of the current research is to find the optimum condition of 

“re-distribution of stresses” of plain and external stepped pressurized thick-walled 

cylinders which are subjected to an operating internal pressure. The procedure 

includes analyzing the effect of the residual stresses, which is created by autofrettage 

process, on radial and tangential hoop stresses, leading to optimum performance, and 

to the optimum fatigue life. The major steps of this research, for both plain and 

stepped thick wall cylinders are delineated below: 

� To formulate the autofrettage procedures. 

�  To prove analytically and by simulation that the optimum autofrettage pressure 

leads to optimum total stress re-distribution in thick-walled cylinder, when an 

internal operating pressure as specified. 

� To find the effect of optimum autofrettage on the performance of thick-walled 

cylinder.  
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� To determine the effect of the step height of stepped thick-walled cylinder on 

optimum autofrettage pressure and radius.   

� To validate the effect of residual stresses caused by optimum autofrettage 

process on pressurizing limits and fatigue life prediction of thick-walled 

cylinders. 

� To establish the fatigue life prediction of thick-walled cylinders which are not 

treated and treated with optimum autofrettage pressure. 

In this research, an effort has been made to determine an analytical and 

numerical finite element solution that most closely represents the actual thick-walled 

cylinder autofrettage process. The flow chart in Figure 1.1 describes the major scope 

of the current research.   

Figure 1.1: Scope of the study  

Increasing of allowable 

internal
OPERATING PRESSURE 

Optimum Autofrettage 
PRESSURE & RADIUS

P a. opt , r a.opt 

The effect of  
RESIDUAL STRESS  

created by autofrettage on  

FATIGUE LIFE

Plain and Stepped 
PRESSURIZED 

     Thick-walled Cylinder 

Autofrettage Processes 

Generate  
RESIDUAL STRESSES 

Fatigue life prediction calculations 

Figure 1.3 

Figure 1.4 

Figure 1.5 
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1.4 Methodology 

The goals are mainly achieved by analytical procedures which are then 

verified by experimental investigation and finite element method. This research 

covers the study of stress distribution and re-distribution of plain and externally 

stepped thick-walled cylinders, subjected to cyclic internal operating pressure after 

being autofrettaged. These geometry and sample used for the components are shown 

in Figure 1.2.  The numerical method of analysis is carried out by using the finite 

element method ABAQUS package, and for fatigue life prediction, the FE-SAFE 

package is used. The research methodology flowcharts systematically highlighting 

the major work of the study, are shown in Figures 1.3, 1.4, and 1.5 

Figure 1.3 describes the process for obtaining the optimum autofrettage 

pressure and radius, for plain thick-walled cylinder which was subjected to a known 

operating pressure. Because the analytical solutions for stepped thick-walled cylinder 

are not available, only the numerical approach was used.  The focus of this study was 

to investigate the effect of various step heights on the optimum autofrettage pressure 

and radius, as shown in Figure 1.4. 
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Figure 1.2: (a) Plain and (b) stepped pressurized thick-walled cylinders 
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Figure 1.3: Optimum autofrettage procedure of plain thick-walled cylinder  
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Figure 1.4: Optimum autofrettage procedures of stepped thick-walled cylinders. 
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To increase the maximum allowable operating pressure in the cylindrical 

vessel as well as to reduce the vessel susceptibility to cracking, desired residual 

stresses are introduced in the cylinder wall, usually by the autofrettage process. 

Figure 1.5 illustrates the numerical procedures of fatigue life prediction of plain and 

stepped thick-walled cylinder which was subjected to cyclic internal operating 

pressure after being treated with optimum autofrettage pressure and comparison the 

results with the life of non-autofrettaged cylinders. 

An experimental work was carried out on the cylinder specimens, firstly, with 

an annealing treatment to recover the material properties and remove the residual 

stresses which was generated through the machining and welding process, followed 

by a tensile test to determine the actual material properties. Secondly, the pressure 

testing of the cylinders was carried out to measure the residual stress at the outer 

surface. This was then followed by microhardness test to find the elastic-plastic 

boundary line using the effect of plastic deformation on material Hardness. The 

analytical and numerical approaches are used to verify the experimental data. Figure 

1.6 shows the aim of the experimental procedure of this research.   
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Figure 1.5: Fatigue analysis procedure  
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Figure 1.6: Experimental procedure 

Tensile Test 
“Material properties” 

Annealing 
“Material recovery” 

Pressure Test on Cylinder 
“Residual stresses at outer surface” 

Results verification  
“Analytically, numerically and experimentally” 

Microhardness test 
“Effect of plastic deformations” 



15

1.5 Thesis Organization 

The thesis consists of eight chapters. The current chapter discusses the 

problem definition, justification for carrying out the research, and objectives. The 

chapter is introduced with the industrial application of the topic of high pressure 

technology, followed by various elastic-plastic analyses for pressurized thick-walled 

cylinders.  

Chapter 2 reviews some of the previous researches on residual stresses 

created by autofrettage procedures and fatigue life of thick-walled cylinders. The 

research also discusses residual stresses and fatigue life prediction based on elastic-

plastic concept. 

A brief description and discussion of the basic fundamentals of stress-strain 

relationship are introduced in Chapter 3. These should be viewed as background 

material for the research reported in Chapter 4. Besides that, the fundamental 

concepts and theories that are related to the research are reviewed in this chapter. 

Chapter 4 details a generalized method for analysis of thick-walled cylinders 

subjected to high internal operating pressure with autofrettage procedures to create 

residual stresses. Here the analytical formulations for optimum autofrettage pressure 

and optimum autofrettage junction line (radius) are derived. 

Numerical investigations using finite element models are given in Chapter 5. 

The problems are solved through different commercial Finite Element codes,

ANSYS, ABAQUS, and the FE-SAFE. 

In Chapter 6, the experimental procedures began with tensile specimen 

preparation and testing to determine the material properties. It was followed by thick-

walled pipe fabrication for pressure testing and residual strain measurements in the 
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pipes which were autofrettaged. The chapter then discusses preparation of the 

microstructures samples and observation.   

Chapter 7 discusses the analytical results and compared with numerical 

analysis. The experimental data are discussed and compared with the analytical and 

numerical results. 

The conclusions are stated in Chapter 8 together with the summary of the 

findings of the research and suggestions for other areas of additional research. 




