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ABSTRACT 

 

 

 

System identification is a field of study involving the derivation of a 

mathematical model to explain the dynamical behaviour of a system. One of the steps in 

system identification is model structure selection which involves the selection of 

variables and terms of a model. Several important criteria for a desirable model structure 

include its accuracy in future prediction and model parsimony. A parsimonious model 

structure is desirable in enabling easy control design. This research explores the use of 

Evolutionary Computation (EC) in model structure selection. The effectiveness of 

penalty function in the objective function of EC is investigated. The results show that a 

suitable penalty function parameter can be achieved by its relation to the smallest 

estimated and tolerable parameter value. Using this function, an algorithm named 

Modified Genetic Algorithm (MGA) is proposed as it is able to reduce the possibility of 

premature convergence. MGA is proven to be more efficient than the original genetic 

algorithm where it is able to find a parsimonious model within a fixed or even shorter 

evolution period. Another algorithm, named Deterministic Mutation Algorithm (DMA) 

is proposed to reduce computational burden and reliance on optimum algorithm 

parameter setting. DMA is a simpler procedure that is able to assist user to obtain a 

parsimonious model within a shorter time. All of these system identification techniques 

are carried out by applying the algorithms to a number of simulated and real-life 

systems, namely gas furnace, Wölfer sunspot and hairdryer, using discrete-time models. 

Validations of the model structures are made using correlation tests and cross-validation. 
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ABSTRAK 

 

 

 

Pengenalpastian sistem merupakan satu bidang kajian bagi menerbitkan model 

matematik untuk memperihal kelakunan dinamik sesuatu sistem. Satu daripada langkah 

dalam pengenalpastian sistem adalah pemilihan struktur model yang mana melibatkan 

pemilihan pemboleh ubah dan sebutan bagi sesuatu model. Beberapa kriteria penting 

bagi struktur model yang diingini ialah kejituan ramalan masa hadapan dan keringkasan 

model. Struktur model yang ringkas diingini untuk membolehkan reka bentuk kawalan 

yang mudah. Penyelidikan ini menyingkap penggunaan Komputasi Evolusi dalam 

pemilihan struktur model. Keberkesanan rangkap denda dalam rangkap objektif 

Komputasi Evolusi diselidiki. Keputusan menunjukkan bahawa parameter rangkap 

denda yang sesuai boleh diperolehi melalui hubungannya dengan nilai parameter terkecil 

yang dianggar dan boleh diterima. Dengan menggunakan rangkap ini, satu algoritma, 

dinamakan Algoritma Genetik Ubahsuaian dicadangkan kerana ia boleh mengurangkan 

kemungkinan penumpuan pramatang. Algoritma Genetik Ubahsuaian ditunjukkan lebih 

cekap daripada algoritma genetik asal di mana ia boleh mencari model termudah dalam 

tempoh evolusi yang sama atau lebih singkat. Satu lagi algoritma, dinamakan Algoritma 

Mutasi Berketentuan, dicadangkan untuk mengurangkan beban komputasi dan 

kebergantungan kepada ketetapan parameter algoritma yang optimum. Algoritma Mutasi 

Berketentuan merupakan prosedur yang lebih mudah dan boleh membantu pengguna 

memilih model termudah dalam masa yang lebih singkat. Kesemua pengenalpastian 

sistem dijalankan dengan menggunakan algoritma ini ke atas beberapa sistem simulasi 

dan sistem sebenar, iaitu relau gas, tompok matahari Wölfer dan pengering rambut, 

menggunakan model masa-diskret. Pengesahan model dibuat dengan menggunakan 

ujian sekaitan dan pengesahan silang. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1  Introduction 

 

 System identification is a method of determining a mathematical model for a 

system given a set of input-output data of the system (Johansson, 1993).  There are four 

main steps involved in system identification and these are data acquisition, model 

structure selection, parameter estimation and model validation (Söderström and Stoica, 

1989; Ljung, 1999). As one of the stage in system identification, the model structure 

selection stage refers to the determination of the variables and terms to be included in a 

model. Basically, an optimum model is described as having adequate predictive 

accuracy to the system response yet parsimonious in structure. A parsimonious model 

structure is preferred since, with less number of variables and/or terms, system analysis 

and control becomes easier. 

  

 Traditionally, model structure selection is performed by determining a finite set 

of models, typically within a certain maximum specification, and enumeratively testing 

the models for predictive accuracy and parsimony. The decision of selection is based on 

certain information criterion where some established criterions are Akaike’s information 

criterion, B-information criterion and -information criterion (Veres, 1991). Another 

method reported is the regression methods such as the backward elimination, forward 

selection or inclusion and stepwise regression method. These methods involve testing of 
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different models guided by an analysis of each model’s squared multiple correlation 

coefficient, R2 and partial F-test value (Draper and Smith, 1998). In another 

development, a method called orthogonal least squares is applied in model structure 

selection (Korenberg et al., 1988; Billings and Yang, 2003a). Despite these encouraging 

developments, these methods require heavy statistical computation. In order to 

overcome this, researchers turn to search methods that are able to provide a selection 

method that is simpler and more efficient in term of cost and time.  

 

The most recent and successful search method applied to system identification is 

evolutionary computation (EC) (Fleming and Purshouse, 2002). EC is a term known 

since 1991 to represent a cluster of methods that uses the metaphor of natural biological 

evolution in its search and optimization approach (Fogel, 2000). Unlike conventional 

search methods, EC searches from a global perspective i.e. it does not settle with a local 

optimum solution (Sarker et al., 2002). Its search is guided by an evaluation function, 

also called objective function (OF), where good information is exploited via genetic 

operators. Generally, these operators are reproduction, crossover and mutation. This 

capability enables the determination of optimum solutions to various optimization 

problems.  

 

The current research and development in evolutionary computation lists three 

major areas that are evolutionary computation theory, evolutionary optimization and 

evolutionary learning. Evolutionary optimization is mentioned to be the most active and 

productive area (Sarker et al., 2002). EC applications are known in various fields, 

among others are power system optimization, control systems engineering and 

manufacturing optimization (Alves da Silva and Abrão, 2002; Fleming and Purshouse, 

2002; Dimopoulos and Zalzala, 2000).  
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1.2  Problem Statement 

 

Model structure selection in system identification basically involves the search 

for an optimum model structure among many alternative models. This can be achieved 

by using a search method. Conventional search methods, namely simulated annealing, 

tabu search and hill-climbing algorithm, have been applied for optimization problems. 

However, conventional algorithms conduct its search within a local landscape (Mitchell, 

1996; Sarker et al., 2002; Michalewicz, 1996). Due to this, the methods have the 

tendency to converge to local optima, giving sub-optimal model structure to a system 

identification problem.  

 

The characteristic of global search is found in EC where it is able to perform the 

search for an optimum model by exploiting good information via global manipulation of 

solutions. However, its ability is restricted when more efficient search is required 

especially when constraints like parsimony of model structure is present in the problem. 

Past researches usually concentrated on predictive accuracy and only few treated the 

issue of model parsimony, yet still with some inadequate justification (Ahmad et al, 

2004a). In this regard, a more suitable objective function is needed. This can be found 

by an understanding of the relationship between certain specified OF to the result of 

model structure selection.  

 

From another viewpoint, EC search is also disadvantageous as it needs 

cumbersome setup of user-defined parameters for the algorithm, referred as algorithm 

parameters in Eiben et al. (2007), and long computational time. Although the 

convergence of EC to global optimum is theoretically achievable with a modest setting, 

the most efficient algorithm should converge with the simplest or optimum setting of the 

parameters. These algorithm parameters include population size, number of generation, 

representation, crossover type, mutation type, probability of crossover, probability of 

mutation and mating strategy (Bäck et al., 2000a; 2000b).  
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A limitation of EC that is related to poor setting of its parameters is premature 

convergence. This happens when the best few members of a population in the algorithm 

predominate the population. In short, an issue that needs addressing is not only 

developing an algorithm that has good convergence properties but also assuring that it 

converges in the direction of the global optimum solution. Although other techniques 

have been applied to overcome this problem, an imbalance to other priorities seems to 

arise. For example, certain selection methods help in increasing diversification of 

population but at the expense of a longer search time. A method that reduces or 

overcomes these limitations is thus needed. Among strategies that seem feasible in 

achieving this is through a re-evaluation of objective function in EC and modification of 

the procedure, especially by the elimination of the factors that contribute to the 

weaknesses. 

 

 

 

1.3  Research Objectives 

 

 Several objectives are identified for this research and these are stated and 

explained as follows: 

(i) To propose an alternative algorithm for model structure selection that 

overcomes the limitations of conventional algorithms and evolutionary 

computation. 

The proposal of an alternative algorithm is mainly based on genetic 

algorithm, which is the most well-known algorithm in EC. The purpose 

of the alternative algorithm is to be used for the determination of 

variables and terms to be included during model structure selection. 

During the development of the algorithm, several issues that arise are 

global search capability, probability of premature convergence, algorithm 

setup, computational complexity and effectiveness of solution in term of 

adequacy and parsimony. Among questions to be answered are ‘What are 
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the right setting of parameters for the search?’ and ‘What evaluation 

function should be used?’  

 

(ii) To show that the algorithm is applicable. 

The applicability of the algorithm is to be shown using simulated data 

modelled by the user. Simulation studies are beneficial because the 

studies enable direct comparison of selected model structures by the 

algorithm to the correct ones. Disturbances are also purposely injected to 

the models to resemble realistic situation. In the final stage of system 

identification, validation is performed to verify the adequacy of the 

model. 

 

(iii) To model real-life problems those are widely discussed in academic 

circle. 

The performance of the algorithm is further evaluated by implementing it 

to real-life modelling problems. Problems that are present in literature 

provide direct benchmarking opportunity in the study. Some real-life 

problems that are available in literature include the Wölfer sunspot time 

series data and gas furnace data (Box et al., 1994; Jenkins and Watts, 

1968). The Wölfer sunspot data is an example of a one-variable time 

series data where no input is present, while the gas furnace data is a 

single-input-single-output (SISO) data. Lastly, an internet database of 

real-life raw data, called DaISy: Database for the Identification of 

Systems, provides another source for testing real-life problems like a 

hairdryer system (De Moor, 2008).  

 

 

1.4  Research Scopes 

 

 Due to wide development of study in the field of system identification, the 

research is limited to the following scopes: 
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 (i) Only discrete-time difference equation models were used. 

With the assumption that the output of a system is a realization of the 

variables at instants of time, discrete time models (also called time series 

model) become a practical choice. The assumption is also inline with 

typical data acquisition practice. In the group of discrete-time models, 

difference equation model is the simplest interpretation of a system’s 

process. A study of difference equation models has shown that difference 

equation models are representative of many other types of models (Chen 

and Billings, 1989). A common linear model structure for discrete-time 

systems is the ARX (AutoRegressive with eXogenous input) model. A 

nonlinear ARX (NARX) model is used to represent a nonlinear discrete-

time system.  

 

(ii) Data consisted of less than two input and/or output variables. 

The testing of the algorithm was made on data those are in the form of 

single input-single output and time series. It does not, however, restrict its 

applicability to data of more than two variables since the application of 

EC to this type of data only requires minor rearrangement of data and is 

not considered as a new subject (Ahmad et al., 2002).  

 

(iii) The least squares method was used for estimation of system parameters. 

For simulated models, the disturbances were injected from a uniform 

distribution. In this circumstance, the least squares method becomes an 

unbiased method since the disturbances infinitesimally behave as white 

noise. This form of disturbances also suggests that the noise data are 

uncorrelated which is suitable for the least squares method. The least 

squares method also becomes a generalization to other methods like 

maximum likelihood (Draper and Smith, 1998). The assumption of white 

noise is also used for real-life problems. The method is widely used in 

literature and the simplest when the assumption is true. 
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(iv) Comparisons of research findings were made to literature findings and 

similar methods.  

When comparing the performance of an alternative algorithm, only 

findings from literature and similar methods were used. No statistical 

method is redo for comparison. Furthermore, a comparison of a modified 

genetic algorithm has been shown to be equally good or better than a 

statistical method that is considered popular, today – the orthogonal least 

squares (Ahmad et al., 2004a; 2004b).  

 

 

 

1.5 Research Methodology 

 

The methodology of the research is based on the general flow of system 

identification which includes data acquisition, model structure selection, parameter 

estimation and model validation, as shown in Figure 1.1. Although the main purpose of 

the research is to propose an alternative algorithm for model structure selection, the 

research also considers other aspects of the flow. Every stage is defined and carried out 

so that the standard procedure of system identification is clearly accomplished and the 

applicability of the whole proposal is clarified. 

 

 The development of the alternative algorithm is related directly to the model 

structure selection step. The step is broken down into several other steps as follows: 

(i) Identifying and understanding the weaknesses/inadequacies in established 

methods. 

(ii) Developing a method that overcomes the weaknesses/inadequacies by 

modifying/renewing the procedure of an established method. 

(iii) Evaluating the performance of the developed method among its own 

variants or other original methods. 

(iv) Repeating steps (i) to (iii) for further development of the developed 

method until a satisfactory algorithm is established. 
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Figure 1.1 Flow chart of research methodology 

 

 The flow chart of the steps for algorithm development is provided in Figure 1.2. 

It has to be noted here that several weaknesses are present in EC, as provided in Section 

1.2, even by considering only EC methods that are developed for model structure 

selection. Due to this reason, the first three steps above are repeated until an algorithm 

that is more superior than its original method is established. Although one might choose 

to see this methodology as a continuous flow by keep modifying the algorithm, it is 

presented here as ending with a final algorithm within the time-frame of the research.  

 

 With regards to the comparison of algorithms during the testing on simulated and 

real-life problems, several common performance indicators are used such as predictive 

accuracy, model parsimony and computation time. Besides these measures, results are 

also compared to literature findings and via validation methods like correlation tests and 

k-step-ahead simulation. 
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Figure 1.2 Flow chart of alternative algorithm development  

 

 

gorithm?

no 

yes 

Use real-life problems 

Further 
modification 

yes 

no 

feasible?

Maintain algorithm



 10

1.6 Research Contributions 

 

 The aim of the research is to propose an alternative algorithm for use in model 

structure selection for system identification. Before any new algorithm is proposed and 

compared to other search methods, the effectiveness of the objective function (OF) as 

used in Ahmad et al. (2004a) is investigated. The first contribution of the research is the 

provision of a clear relationship between the selected OF and the result of model 

structure selection. A guide on the selection of a suitable penalty parameter that provides 

an adequate and parsimonious model is also presented. 

  

 The second contribution of the research revolves around the proposal of a 

modified genetic algorithm (MGA). The idea behind the modification is through 

grouping of population for different manipulation. Although the idea have been used in 

Ahmad et al. (2004b), the implementation was rather case-based. This research provides 

a more clear-cut method of how the grouping should be done.  

 

 The last contribution is the proposal of another algorithm, named deterministic 

mutation algorithm (DMA). This algorithm takes advantage of the implicit parallelism 

theory as defined by Holland (1992). The introduction of ‘wildcard attribute’ in the 

theory is exploited for model structure selection problem and combined with an element 

of forward search. The strengths of the algorithm are its reduction of the reliance for 

optimum algorithm setting, better parsimonious model search and less computation time. 

 

 

 

1.7   Organization of the Thesis 

 

This thesis comprises of six chapters. The first chapter introduces the 

background of the research. This is followed by an explanation of the problem to be 

tackled. The objectives and scopes of the research are then laid out and the research 
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methodology is described. A brief explanation of the organization of the thesis is also 

provided. 

 

 The second chapter reviews various literature related to the study mainly on 

system identification and evolutionary computation. In the early part of the chapter, the 

steps of system identification are explained. This explanation covers various choices of 

model types, considerations in constructing an optimum model structure and methods of 

implementing parameter estimation and model validation. Next, several methods applied 

for model structure selection are explained along with some identified disadvantages. 

The later part of the chapter discusses EC and its four specific methods – genetic 

algorithm, evolution strategies, evolutionary programming and genetic programming. 

Examples of EC application in modelling are given. Next, the chapter reviews recent EC 

literature on the aspect of algorithm procedures for system identification followed by 

explanations of some common procedures. Potential areas for research are provided at 

the end before the summary of the chapter. 

 

 The third chapter deals with an investigation of the suitability of an objective 

function for model structure selection. The chapter begins with an explanation of NARX 

model structure representation and the least squares method as its parameter estimation 

method. Then, genetic algorithm as its search method is explained in terms of its 

procedure, theoretical foundation and other related aspects. This is followed by a 

background of the study where a logarithmic penalty function with a penalty parameter 

is tested on five simulated models. The discussion of the results is supplemented with 

visual presentation of the relationship between the OF and the results of model structure 

selection. A discussion on the selection of a suitable penalty parameter is given. The 

shortcomings of the method are also provided.  

 

  Chapter 4 explains a modified genetic algorithm (MGA) that stresses on 

grouping of the solution population by a fixed ratio. Two groups and two individuals of 

different fitness values are manipulated differently. A discussion on a model validation 

method based on correlation tests is also presented. Based on the tests on two simulated 
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models and two real-life problems, a variant of MGA denoted Ratio 3, is proven to 

produce more accurate model structure or requires less generation in producing the same 

model structure compared to other variants. One of the other variant is similar to a 

simple genetic algorithm. 

 

 Another alternative algorithm, called deterministic mutation algorithm (DMA), is 

explained in Chapter 5. The theoretical foundation and procedure of DMA is provided 

where, among others, explains its contribution in escaping from the usual reliance of 

evolutionary computation on algorithm setting. Its differences to hill-climbing 

algorithms are also given. The background of the simulation study are given along with 

an explanation of the cross-validation method. Three simulated models and three real-

life problems are tested and the results show that DMA has the advantage as a model 

structure selection method that easily balances accuracy and model parsimony and 

requires shorter computation time.  

 

 The last chapter recaps the application of evolutionary computation in model 

structure selection and its downfalls. It lists the findings of the research, namely in the 

usage of penalty function in objective function and the performance of the algorithms – 

modified genetic algorithm and deterministic mutation algorithm. Several 

recommendations for future research directions are also given. 

 

 

 

 

 

 

 

 

 

 




