
THE DEADLINE-BASED SCHEDULING OF DIVISIBLE REAL-TIME
WORKLOADS ON MULTIPROCESSOR PLATFORMS

SURIAYATI BT CHUPRAT

UNIVERSITI TEKNOLOGI MALAYSIA

THE DEADLINE-BASED SCHEDULING OF DIVISIBLE REAL-TIME

WORKLOADS ON MULTIPROCESSOR PLATFORMS

SURIAYATI BT CHUPRAT

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Mathematics)

Faculty of Science

Universiti Teknologi Malaysia

JUNE 2009

iii

To

my beloved husband, Abd Hadi,

my loving childrens, Aizat and Ainaa,

and

my loving and supportive parents,

Hj Chuprat and Hajjah Rabahya.

iv

ACKNOWLEDGEMENT

First of all, I thank ALLAH (SWT), the Lord Almighty, for giving me the health,

strength, ability to complete this work and for blessing me with supportive

supervisors, family and friends.

I wish to express my deepest appreciation to my supervisor, Professor Dr

Shaharuddin Salleh for his idea, support, enthusiasm, and patience. I have learnt an

enormous amount from working with him. My special thanks to my co-supervisor

Professor Dr Sanjoy K. Baruah for his guidance, support, respect, and kindness. The

opportunity to collaborate with him during my five months visit at the University of

North Carolina, Chapel Hill, USA has benefited my research tremendously.

I would also like to thank Professor Dr James H. Anderson for giving me the

opportunity to attend his class on Real-time Systems at UNC. Thanks to the Real

Time Systems Group of UNC (Nathan, Bjeorn, John, Aaron, Hennadiy) for sharing

their dynamic discussions during the “Real-time Lunch” weekly meeting.

I am forever indebted to my employer Universiti Teknologi Malaysia (UTM) for

granted me the study leave, funds and the facilities for my research. Thanks to all

management staff of KST Kuala Lumpur, HRD Skudai and Canselori UTMKL.

Life would be harder without the support of many good friends. Thanks to Dr Zuraini

and Dr Ruzana for being such a good mentor, Arbai’ah and Haslina for sharing the

challenging PhD years, Dr Nazli, Dr Maslin and Dr Liza for their support and

motivations. Thank you to all my friends in KST Kuala Lumpur and UTM Skudai.

Finally, I thank to all my family members for their love, patient and uncountable

supports.

v

ABSTRACT

Current formal models of real-time workloads were designed within the

context of uniprocessor real-time systems; hence, they are often not able to

accurately represent salient features of multiprocessor real-time systems.

Researchers have recently attempted to overcome this shortcoming by applying

workload models from Divisible Load Theory (DLT) to real-time systems. The

resulting theory, referred to as Real-time Divisible Load Theory (RT-DLT), holds

great promise for modeling an emergent class of massively parallel real-time

workloads. However, the theory needs strong formal foundations before it can be

widely used for the design and analysis of real-time systems. The goal of this thesis

is to obtain such formal foundations, by generalizing and extending recent results and

concepts from multiprocessor real-time scheduling theory. To achieve this, recent

results from traditional multiprocessor scheduling theory were used to provide

satisfactory explanations to some apparently anomalous observations that were

previously made upon applying DLT to real-time systems. Further generalization of

the RT-DLT model was then considered: this generalization assumes that processors

become available at different instants of time. Two important problems for this

model were solved: determining the minimum number of processors needed to

complete a job by its deadline; and determining the earliest completion time for a job

upon a given cluster of such processors. For the first problem, an optimal algorithm

called MINPROCS was developed to compute the minimum number of processors

that ensure each job completes by its deadline. For the second problem, a Linear

Programming (LP) based solution called MIN-� was formulated to compute the

earliest completion time upon given number of processors. Through formal proofs

and extensive simulations both algorithms have been shown to improve the non-

optimal approximate algorithms previously used to solve these problems.

vi

ABSTRAK

 Model formal bagi beban kerja masa nyata asalnya direkabentuk dalam konteks

sistem masa-nyata satu pemproses. Model ini kadangkala gagal mewakilkan secara

tepat ciri-ciri sistem masa-nyata pemproses berbilang. Masalah ini cuba diatasi oleh

para penyelidik dengan mengaplikasikan model beban kerja yang digunakan di

dalam Teori Pembahagian Beban (DLT) kepada sistem masa nyata. Hasil aplikasi ini

dikenali sebagai Teori Pembahagian Beban Masa Nyata (RT-DLT). Teori ini

menunjukkan potensi yang meyakinkan bagi memodelkan beban kerja masa nyata

selari dalam kelas besar. Walaubagaimanapun, sebelum teori ini boleh digunakan

dalam merekabentuk dan analisis sistem masa nyata, ia memerlukan asas formal

yang kukuh. Tujuan kajian tesis ini adalah untuk menghasilkan asas formal yang

dimaksudkan dengan memperluaskan hasil kajian terkini dan menggunakan konsep

dari teori sistem masa nyata pemproses berbilang. Untuk mencapai tujuan ini, hasil

kajian terkini daripada teori penjadualan sistem masa nyata pemproses berbilang

digunakan bagi menerangkan pemerhatian yang luar-biasa apabila Teori

Pembahagian Beban diaplikasikan kepada sistem masa nyata. Tesis ini seterusnya

mengkaji model Teori Pembahagian Beban Masa Nyata apabila berlaku keadaan di

mana masa sedia pemproses-pemproses di dalam kluster adalah berbeza-beza. Dua

masalah utama berjaya diselesaikan dalam kajian ini: menentukan bilangan minimum

pemproses yang diperlukan untuk menyiapkan beban kerja sebelum sampai masa

tamat; menentukan masa yang paling awal bagi menyiapkan sesuatu beban kerja.

Bagi masalah pertama, satu algoritma optimal dinamakan MINPROCS telah

dihasilkan. Dan untuk masalah kedua satu penyelesaian berasaskan Pengaturcaraan

Lelurus yang dinamakan MIN-� telah direkabentuk. Melalui pembuktian formal dan

beberapa siri simulasi, telah dibuktikan bahawa kedua-dua penyelesaian adalah

optimal dan sekaligus algoritma yang sebelumnya digunakan untuk menyelesaikan

masalah yang sama diperbaiki.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATION xv

LIST OF SYMBOLS xvi

LIST OF APPENDICES xviii

1 INTRODUCTION

1.1 Overview 1

1.2 Research Problem and Motivation 3

1.3 Research Objectives 4

1.4 Scope of Research 5

1.5 Research Methodology 6

1.6 Thesis Organization 9

viii

 2 LITERATURE REVIEW

2.1 Introduction 11

 2.2 Real-time Systems 12

 2.2.1 Real-time Workload 12

 2.2.2 Platform Model 17

 2.2.3 Scheduling Algorithms 19

 2.3 Real-time Multiprocessor Scheduling and EDF 22

 2.4 Parallel Execution upon Multiprocessors 28

 Real-time Systems

 2.4.1 Dynamic Scheduling Algorithm 28

 2.4.2 Work Limited Parallelism 29

 2.4.3 Maximum Workload Derivative First 30

 With Fragment Elimination

 2.4.4 Divisible Load Theory (DLT) 31

 2.4.5 Real-time Divisible Load Theory 35

 2.4.6 Extending Real-time Divisible Load Theory 37

3 DEADLINE-BASED SCHEDULING OF

 DIVISIBLE REAL-TIME LOADS

3.1 Introduction 38

 3.2 Application of DLT to Real-time Workloads 39

 3.2.1 Scheduling Framework 41

 3.2.1.1 Scheduling Algorithms 42

 3.2.1.2 Node Assignment Strategies 42

 3.2.1.3 Partitioning Strategies 43

 3.2.2 An Apparent Anomaly 48

ix

 3.3 A Comparison of EDF-OPR-AN and 48

 EDF-OPR-MN

 3.3.1 Uniprocessor and Multiprocessor EDF 49

 Scheduling of Traditional Jobs

 3.3.2 When the Head Node is a Bottleneck 51

 3.3.3 When the Head Node is not a Bottleneck 55

 3.4 Summary 60

4 SCHEDULING DIVISIBLE REAL-TIME LOADS ON

 CLUSTER WITH VARYING PROCESSOR

 START TIMES

4.1 Introduction 61

 4.2 Motivation 62

 4.3 Foundation 63

 4.3.1 Processor Ready Times 63

 4.3.2 Processor with Equal Ready Times 64

 4.3.3 Processors with Different Ready Times 67

 4.4 Determining the Required Minimum Number 68

 of Processors

 4.5 Computing the Exact Required Minimum Number 70

 of Processors (MINPROCS)

 4.6 Simulation Results 73

 4.7 Summary 85

5 A LINEAR PROGRAMMING APPROACH FOR

 SCHEDULING DIVISIBLE REAL-TIME LOADS

5.1 Introduction 86

 5.2 Computing Completion Time 87

 5.3 Linear Programming Formulation 90

x

 5.4 Simulation Design 96

 5.5 Experimental Evaluation 100

 5.5.1 Performance Comparison 100

 5.5.3 Heterogeneous Platforms 107

 5.5.3 Effect of Number of Processors 108

 5.6 Summary 109

6 CONCLUSION AND FUTURE WORK

6.1 Conclusions 110

 6.2 Contributions and Significance 111

 6.3 Future Research 114

REFERENCES 116

APPENDIX A 125

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Bound on Inflation Factor 55

3.2 Cost, for selected values of � and n (assuming 1mC� �) 57

4.1 Comparison of generated
minn with increasing deadline 75

 and a cluster of 16n � processors

4.2 Comparison of generated minn with increasing deadline 76

 and a cluster of 32n � processors

4.3 Comparison of generated
minn with increasing mC 77

 and a cluster of 16n � processors

4.4 Comparison of generated
minn with increasing mC 78

 cost mC and a cluster of 32n � processors

4.5 Comparison of generated
minn with increasing pC 80

 cost mC and a cluster of 16n � processors

4.6 Comparison of generated minn with increasing pC 81

 cost mC and a cluster of 32n � processors

4.7 Comparison of generated minn with increasing workload size 83

 cost mC and a cluster of 16n � processors

4.8 Comparison of generated minn with increasing workload size 84

 cost mC and a cluster of 32n � processors

5.1 Fraction i� values and calculations of completion time � 103

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Conducted phases in this research 6

1.2 Thesis organization 9

2.1 Typical parameters of a real-time job 12

2.2 Example of arrivals and executions of jobs generated by 14

 periodic tasks

2.3 Example of arrivals and executions of jobs generated by 15

 sporadic tasks

2.4 The layout of a SMP platform 18

2.5 Uniprocessor scheduling 20

2.6 Uniprocessor scheduling with preemption 20

2.7 A multiprocessor global scheduling 21

2.8 A multiprocessor partitioned scheduling 21

2.9 Example of an EDF schedule on uniprocessor platforms 23

2.10 Feasible schedule exists for a non-preemptive system 24

2.11 EDF schedule in a non-preemptive system 24

2.12 An example of Dhall’s effect 26

2.13 An example of two processors platform and a task 27

 systems that are schedulable by other scheduling

 strategies but not schedulable by EDF

2.14 Minimizing total workload and eliminating a fragmented workload 30

2.15 Single-Level Tree Network � 32

2.16 Timing Diagram of Single-Level Tree Network with Front-End 33

2.17 Timing Diagram of Single-Level Tree Network without Front-End 35

2.18 Research Roadmap 37

xiii

3.1 The abstraction of RT-DLT framework 41

3.2 Timing diagram for EPR-based partitioning 44

3.3 Timing diagram for OPR-based partitioning 45

4.1 Data transmission and execution time diagram when 65

 processors have equal ready times

4.2 Data transmission and execution time diagram when 67

 processors have different ready times

4.3 Computing
minn 71

4.4 Comparison of generated
minn with increasing deadline, 74

 and a cluster of 16n � processors

4.5 Comparison of generated minn with increasing deadline 75

 and a cluster of 32n � processors

4.6 Comparison of generated
minn with increasing mC 77

 and a cluster of 16n � processors

4.7 Comparison of generated
minn with increasing mC 78

 and a cluster of 32n � processors

4.8 Comparison of generated
minn with increasing pC 79

 and a cluster of 16n � processor

4.9 Comparison of generated
minn with increasing pC 80

 and a cluster of 32n � processors

4.10 Comparison of generated minn with increasing load size 82

 and a cluster of 16n � processors

4.11 Comparison of generated
minn with increasing load size 83

 and a cluster of 32n � processors

5.1 Computing the completion time – LP formulation 91

5.2 The Simulation Design 96

5.3 Comparisons – computed completion time when 4n � 100

5.4 Comparisons – computed completion time when 6n � 101

5.5 Comparisons – computed completion time when 8n � 102

5.6 Comparisons – computed completion time when 12n � 102

5.7 Comparisons – computed completion time when 16n � 104

xiv

5.8 Comparisons – computed completion time when 20n � 105

5.9 Computed completion time with various mC values 106

5.10 Computed completion time with various pC values 106

5.11 Computed completion time with various N values 108

6.1 Summary of Contributions and Publications 113

xv

LIST OF ABBREVIATIONS

AN All Nodes

ATLAS AToroidal LHC ApporatuS

CMS Compact Muon Solenoid

DAG Directed Acyclic Graph

DLT Divisible Load Theory

DM Deadline Monotonic

EDF Earliest Deadline First

EDZL Earliest Deadline Zero Laxity

EPR Equal Partitioning

EPU Effective Processor Utilization

FIFO First In First Out

IIT Inserted Idle Time

LLF Least Laxity First

LP Linear Programming

MN Minimum Nodes

MWF Maximum Workload Derivative First

OPR Optimal Partitioning

RM Rate Monotonic

RT-DLT Real-time Divisible Load Theory

SMP Symmetric Shared Memory Multiprocessor

UMA Uniform Memory Access

WCET Worst Case Execution Time

xvi

LIST OF SYMBOLS

ia - Arrival Time of thi job

ic - Execution Requirement of thi job

mC - Communication Cost

pC - Computation Cost
j

ic - Computation Time

iC - Worst Case Requirement of thi task

id - Deadline of thi job

iD - Deadline of thi task

ie - Worst Case Execution Time of thi job

if - Completion Time of thi job

iJ - thi Job

I - Collection of Jobs

iL - thi Link

n - Number of Processors
minn - Minimum Number of Processors

ip - Period or Inter-arrival between successive jobs

iP - thi Processor

ir - Ready Time thi job

is - Start Time thi job

()S t - Schedule as Integer Step Function

iT - Minimum Inter-arrival separation of thi task
t - Time

xvii

iU - Utilization of thi task

()sumU � - Total Utilization of a task system �

max ()U � - Maximum Utilization of a task system �

max ()V � - Maximum Utilization of a task system �

 in non-preemptive system

()sumV � - Total Utilization of a task system �

 in non-preemptive system

max ()e � - Maximum execution time of task �

Greek Symbols

i� - thi Task

i� - thi Workload

i� - thi Fraction of Workload

� - Ratio of pC and (pC + mC)

	 - Density of thi task

max ()	 � - Total Density of a task system �

()sum	 � - Largest Density of a task system �

i� - Execution Time of thi workload

 - Off set

()n� - Cost of executing a job

xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A PAPERS PUBLISHED DURING THE 125

 AUTHOR’S CANDIDATURE

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Real-time computer application systems are systems in which the correctness

of a computation depends upon both the logical and temporal properties of the result

of the computation. Temporal constraints of real-time systems are commonly

specified as deadlines within which activities should complete execution. For hard-

real-time systems, meeting timing constraints is crucially important – failure to do so

may cause critical failures and in some cases cause hazard to human life (Buttazzo,

2004). In soft-real-time systems, by contrast, the consequences of an occasional

missed deadline are not as severe (Buttazzo et al., 2005). Given the central

importance of meeting timing constraints in hard-real-time systems, such systems

typically require guarantees prior to deployment – e.g., during system design time –

that they will indeed always meet their timing constraints during run-time. This

thesis is primarily concerned with hard-real-time systems.

Real-time computing will continue to play a crucial role in our society, as

there are an increasing number of complex systems that needs computer control.

Many next-generation computing applications such as automated manufacturing

systems, defense systems (e.g. smart bombs, automotive, avionics and spacecraft

control systems), high speed and multimedia communication systems, have

significant real-time components (Liu, 2000; Buttazzo, 2004).

2

Such real-time application systems demand complex and significantly

increased functionality and it is becoming unreasonable to expect to implement them

upon uniprocessor platforms. Consequently, these systems are increasingly coming

to be implemented upon multiprocessor platforms, with complex synchronization,

data-sharing and parallelism requirements.

Formal models for representing real-time workloads have traditionally been

designed for the modeling of processes that are expected to execute in uniprocessor

environments. As real-time application systems increasingly come to be

implemented upon multiprocessor environments, these same models have been used

to model the multiprocessor task systems. However, these traditional models fail to

capture some important characteristics of multiprocessor real-time systems;

furthermore, they may impose additional restrictions (“additional" in the sense of

being mandated by the limitations of the model rather than the inherent

characteristics of the platform) upon system design and implementation.

One particular restriction that has been extended from uniprocessor models to

multiprocessor ones is that each task may execute upon at most one processor at each

instant in time. In other words, they do not allow task parallel execution. However,

this is overly restrictive for many current multiprocessor platforms; to further

exacerbate matters, this restriction is in fact one significant causal factor of much of

the complexity of multiprocessor scheduling. Indeed, as Liu (1969) pointed out, “the

simple fact that a [job] can use only one processor even when several processors are

free at the same time adds a surprising amount of difficulty to the scheduling of

multiple processors." Certainly, the next generation of embedded and real-time

systems will demand parallel execution.

Recently, some researchers have studied extensions to the workload models

traditionally used in real-time scheduling theory, to allow for the possibility that a

single job may execute simultaneously on multiple processors. One of the more

promising approaches in this respect has been the recent work of Lin et al. (2006a,

2006b, 2007a, 2007b, 2007c), that applies Divisible Load Theory (DLT) to

multiprocessor real-time systems. The resulting theory is referred to as Real-time

Divisible Load Theory (RT-DLT).

3

1.2 Research Problem and Motivations

Real-time Divisible Load Theory (RT-DLT) holds great promise for

modeling an emergent class of massively parallel real-time workloads. However, the

theory needs strong formal foundations before it can be widely used for the design

and analysis of hard real-time safety-critical applications. In this thesis, we address

the general problem of obtaining such formal foundations, by generalizing and

extending recent results and concepts from multiprocessor real-time scheduling

theory. Within this general problem, here are some of the specific issues we address:

i. Prior research in RT-DLT has reported some apparently anomalous findings, in

the sense that these findings are somewhat counter-intuitive when compared to

results from “regular” (i.e., non-real-time) DLT. What explains these

(previously-identified) apparent anomalies in RT-DLT?

ii. When the processors in a multiprocessor platform all become available at the

same instant in time, the issue of scheduling a real-time divisible workload on

such platforms is pretty well understood. However, the reality in many

multiprocessor environments is that all the processors do not become available

to a given workload at the same instant (perhaps because some of the

processors are also being used for other purposes). How does one extend RT-

DLT to render it applicable to the scheduling of real-time workloads upon

platforms in which all the processors are not made available simultaneously?

Specifically we address two important problems:

� Given a divisible job (, ,)i i i ia d� �� and varying processor ready-times

1 2 3
, , ,...r r r what is the minimum number of processors needed to meet a

job’s deadline?

� Given a divisible job (, ,)i i i ia d� �� and n (identical) processors with

varying ready-times
1 2
, ,..., nr r r upon which to execute it, what is the

earliest time at which the job i� can complete execution?

4

1.3 Research Objectives

As stated above, the goal of this thesis is to develop strong formal

foundations that enable the application of RT-DLT for the design and analysis of

multiprocessor hard real-time systems. To achieve this goal, we must build

theoretical foundations and accurate simulation environments for experimenting

with, and explaining the behavior of, hard real-time DLT systems. Some of the

specific objectives that we have identified as needing to be accomplished in order to

achieve this goal are as follows:

i. To investigate the application of Divisible Load Theory (DLT) models to real-

time workloads, in order to obtain a deep and detailed understanding of the

behavior of such systems.

ii. To theoretically explain the apparent anomalies of Real-time Divisible Load

Theory (RT-DLT).

iii. To extend RT-DLT so that they are able to handle cluster and workload models

that are as general as possible. Specifically, we hope that these extensions will

be applicable to platforms in which all processors do not become available

simultaneously.

iv. To build efficient scheduling algorithms that will compute the exact minimum

number of processors that must be assigned to a job in order to guarantee that

it meets its deadline — on clusters in which all processors are not

simultaneously available.

v. To develop efficient scheduling algorithms that minimize the completion time

of a given divisible job upon a specified number of processors — on clusters in

which all processors are not simultaneously available.

5

1.4 Scope of Research

In this thesis, we focus upon a particular formal model of real-time workloads

that is very widely used in real-time and embedded systems design and

implementation. In this model, it is assumed that there are certain basic units of

work, known as jobs that need to be executed. Such jobs are generated by recurring

processes known as periodic or sporadic tasks – each such task represents a piece of

straight-line code embedded within a potentially infinite loop. This workload model

is described in greater detail in Chapter 2.

There are several kinds of timing constraints considered in the real-time

scheduling literature; in this thesis, we restrict our attention for the most part to just

one of these kinds of constraints – meeting deadlines of jobs.

With respect to system resources, we will focus for the most part on

minimizing the number of processors used. (Although other system resources, such

as network bandwidth, energy, etc. are also important, optimization with respect to

these resources does not lie within the scope of this thesis.)

Several different network topologies, such as stars, meshes, and trees, have

been studied in DLT. We restrict our attention to the single-level tree topology,

since this is one of the simpler models but nevertheless appears to contain most of

the important issues that arise when DLT is extended to apply to real-time

workloads.

6

1.5 Research Methodology

We conducted this research in six major phases, as shown in Figure 1.1. The

six phases are: Literature Review, Analysis and Problem Formulations, Algorithms

Design, Algorithms Implementation, Algorithms Evaluations and Documentation.

Each of these phases will be described in greater detail in the following pages.

Literature Review

Analysis and Problem

Formulations

Algorithms Design

Algorithms Implementation

Algorithms Evaluation

Documentations

 Figure 1.1 Conducted phases in this research

7

i. Literature Review

We performed literature review on various topics related to the research

conducted in this thesis. The topic includes:

� State of the art of Real-time Systems

� State of the art of Real-time scheduling theory

� Current findings on Divisible Load Theory (DLT)

� Current findings on Real-time Divisible Load Theory (RT-DLT)

ii. Analysis and Problem Formulations

In this phase, we studied the applicability of DLT to multiprocessor scheduling

of real-time systems. Specifically we analyzed series of work on RT-DLT (Lin

et al., 2006a, 2006b, 2007a, 2007b, 2007c) and formulated three important

problems arises upon these works. We explain these formulations in Chapter 3, 4

and 5 accordingly.

iii. Algorithms Design

As stated earlier, we formulated three significant problems detected from the

work of Lin et al. (2006a, 2006b, 2007a, 2007b, and 2007c). For the first

problem, we used existing scheduling theory to explain an anomalous

observation of Lin et al. (2006a, 2006b, 2007a) when they first applied DLT to

real-time multiprocessor scheduling. For the second problem, we designed an

efficient algorithm to compute the minimum number of processors needed for a

job to meet its deadline. To develop this algorithm, we used the first principle of

RT-DLT found in Lin et al. (2006a, 2006b, and 2007a). And for the third

problem, we formed a Linear Programming-based algorithm to compute the

minimum completion time of a job execution. We present each detail design in

Chapter 3, 4 and 5 respectively.

8

iv. Algorithms Implementation

In this phase, we developed series of simulations to compare the degree of

improvement of our proposed algorithms to prior existing ones. For the second

problem, we implemented the algorithm using C++ and for the third problem we

developed the simulation programs using MATLAB.

v. Algorithms Evaluation

We evaluated our proposed algorithms by analyzing the results produced by our

simulation programs. We compared the results produced by our algorithm with

the ones produced by previous algorithms. In all comparisons, our algorithms

showed significant improvement over pre-existing ones. We also provide

lemmas and proofs to support our results and discussion in this thesis.

We conducted phase 3, 4 and 5 in three cycles for the three problems

formulated.

vi. Documentations

Finally each contribution reported in this thesis was documented in technical

publications. A list of papers published in the proceedings of conferences and

journals are listed in Appendix A. The final and complete documentation is

compiled in this thesis.

9

1.6 Thesis Organization

This thesis is organized into six chapters. Figure 1.2 shows the flow of the

thesis organization; descriptions are given in the following pages.

CHAPTER 1

Introduction

CHAPTER 2

Literature Review

CHAPTER 3

Deadline-based

Scheduling of Divisible

Real-time Loads

CHAPTER 5

A Linear Programming

Approach for Scheduling

Divisible Real-time Loads

CHAPTER 6

Conclusion and

Future Work

CHAPTER 4

Scheduling Divisible Real-time

Loads on Cluster with Varying

Processor Start Times

Figure 1.2 Thesis organization

This thesis explores two important research areas: Real-time Systems and

Divisible Load Theory. In Chapter 2, we present some background information and

review some of the prior results on real-time systems. The first part describes the

basic concepts of real-time systems. We then briefly review some fundamental

10

results concerning real-time multiprocessor scheduling. The discussion mainly

focuses on global multiprocessor scheduling with the Earliest Deadline First (EDF)

scheduling algorithm. This chapter also discusses in greater detail the concept of

Divisible Load Theory (DLT) and the application of this theory to multiprocessor

scheduling of real-time systems, referred to as RT-DLT. We review some of the

prior work done in RT-DLT, which we extend as part of this thesis.

In Chapter 3, we will report our first contribution presented in this thesis. We

describe the initial work of Lin et al. (2006a, 2006b and 2007a) and their apparently

anomalous findings with respect to a scheduling framework integrating DLT and

EDF. We then present our results that provide a theoretical analysis to some of these

anomalies.

In Chapter 4, we describe our study on scheduling problems in RT-DLT

when applied to clusters in which different processors become available at different

time-instants. We present an algorithm that efficiently determines the minimum

number of processors that are required to meet a job’s deadline. We then describe

and discuss simulation results evaluating the proposed algorithm, and comparing it to

previously-proposed heuristics for solving the same problem.

We have proposed a Linear Programming (LP) based approach to efficiently

determine the earliest completion time for the job on a given processors which may

become available at different times. This LP based approach is described in Chapter

5. We then present extensive experimental simulations to evaluate this LP based

approach and consequently show how this approach significantly improves on the

heuristic approximations that were the only techniques previously known for solving

these problems.

Finally, we conclude our work and suggest directions for future research in

Chapter 6.

