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CONTROL OF A ROBOT ARM USING ITERATIVE LEARNING
ALGORITHM WITH A STOPPING CRITERION

MUSA MAILAH1 & JONATHAN CHONG WUN SHIUNG

Abstract. The robust performance of a robot control scheme is vital to ensure that the robot
accomplishes its tasks desirably in a constraint environment involving disturbances, parametric changes,
uncertainties and varied operating conditions. The study introduces the Active Force Control and
Iterative Learning Algorithm (AFCAIL) scheme with an improved feature in the form of a suitably
designed stopping criterion incorporated in the control strategy. The scheme is applied to the control
of a horiziontally operated robotic two-link planar manipulator. The proposed stopping criterion is
specifically designed to halt the iterative learning process when the conditions related to the accuracy
of the performed tasks and the acquisition of appropriate estimated inertia matrix of the robot arm are
favourably met. In this way, the robot is said to perform desirably and excellently. The effectiveness of
the scheme is also investigated by considering a number different loading and operating conditions.
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Abstrak. Prestasi lasak bagi skema kawalan robot sangat perlu untuk memastikan robot dapat
bekerja dengan berkesan seperti yang dikehendaki dalam persekitaran terbatas melibatkan gangguan,
perubahan parameter, ketidaktentuan dan kepelbagaian keadaan operasi. Kajian yang dibuat adalah
berkaitan dengan satu skema kawalan daya aktif dan algoritma pembelajaran berlelaran (AFCAIL)
yang melibatkan satu ciri pembaikan dalam bentuk penggunaan kriteria memberhenti yang sesuai
dimuatkan dalam strategi kawalan. Skema tersebut digunapakai terhadap sistem pengolah robotik
planar berlengan-dua yang beroperasi secara mendatar. Kriteria memberhenti yang dicadangkan
adalah direka bentuk untuk memberhentikan proses pembelajaran berlelaran apabila syarat atau
keadaan berkaitan dengan kejituan ketika melakukan tugas serta perolehan matriks inersia anggaran
pengolah yang dikehendaki dapat dipenuhi. Dengan cara demikian, robot dikatakan dapat beroperasi
dengan baik sebagaimana yang diarahkan. Keberkesanan skema juga dikaji dengan mengambil kira
beberapa keadaan bebanan dan operasi.

Kata kunci: Robot, kawalan daya aktif, algoritma pembelajaran berlelaran, kriterion memberhenti

1.0 INTRODUCTION

With the ever increasing in complexity of the robot tasks, a robot control system
engineer has to design and come up with a control scheme that will enable the proposed
robotic system to perform the required tasks with a high degree of precision, accuracy
and reliability particularly under various conditions involving the robot’s interaction
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with its environment. This also implies that the system has to be robust, stable and
effectively capable to accomplish the prescribed tasks even in the presence of
disturbances, parametric changes, uncertainties and varied operating conditions. There
has been a growing trend in the development and implementation of intelligent
mechanisms in robot control [1,2]. These mechanisms include the application of neural
networks [3,4], fuzzy logics [5,6] and iterative learning algorithms [7–12]. They are
normally incorporated into the robot force control strategy to enhance the system’s
overall performance by generally introducing an automatic decision making facility in
the control loop. One such control scheme is the active force control (AFC) strategy
[13] applied to the control of a robot arm. This control scheme together with the suitably
proposed intelligent mechanism is the main focus of the study. AFC has been shown
to be very robust and effective in countering disturbances and varied operating
conditions. A number of intelligent AFC schemes has been developed using neural
network, fuzzy logics and iterative learning algorithms [14,15]. It is the aim of the paper
to improvise the latter scheme known as Active Force Control And Iterative Learning
(AFCAIL) to include a stopping criterion that is necesssary to halt the operation of the
robot arm, upon satisfying a number of prescribed conditions.

The paper is structured as follows; the first part describes the motivation of the
study and the basic underlying principles of the AFC and iterative learning theories. It
is followed by a narration of the design of the stopping criterion and later, the simulation
study to verify the effectiveness of the proposed concept. The analysis of the results
ensues and finally a conclusion is drawn plus a numbers of suggestions for future
works outlined.

2.0 PROBLEM STATEMENT

The main drawback of the AFC scheme is the task of computing the estimated inertia
matrix of the robot arm which is essential in the AFC feed-forward control loop. The
application of the iterative learning has been proven to be very effective in estimating
the appropriate inertia matrix of the robot arm automatically, continuously and on-line
while the robot is performing its task [14]. However, the computation of the matrix is
done in a ‘free flowing’ manner without any reference made to corrective actions to be
taken to inform the system that the learning process has been complete. In other words,
there is no stopping mechanism to halt the iteration process even though the matrix
has been considered appropriately estimated and the system has been performing
desirably. There is a danger of the system going into instability as iteration continues
infinitely. Thus, a suitable stopping criterion for the AFCAIL scheme should be
designed and developed based on a set of pre-defined conditions such as those related
to accuracy and stability. The incorporation of the stopping criterion is expected to
provide a clearer picture of the system pertaining to its performance and could also
minimise the time and resources involved.
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3.0 ACTIVE FORCE CONTROL

The underlying principles of the AFC scheme is explained in this section. From
Newton’s second law of motion, for a rotating mass, the sum of all torques (τ ) acting
on a rigid rotating body is the product of the mass inertia (I ) and the angular
acceleration (θ ) of the body in the direction of the applied torque.

τ θ=∑ I (1)

The general equation for a robot system with serial configuration is,

( )τ τ θ θ+ =d I (2)

where τ is the applied torque by the actuator, τd is the disturbance torque, I(θ ) is the

mass moment of inertia of the robot arm with q being the joint angle and θ is the
angular acceleration of the robot arm.

Figure 1 A general schematic diagram of the AFC     scheme
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In order to maintain robustness and stability, the disturbance torques can be estimated
according to the following expression,

( )τ θ θ τ= −** * *
d I (3)

where the use of the superscript * implies measured or computed (or estimated)

quantities. Practically, the quantities τ * and θ * can be measured directly using torque
sensor and accelerometer respectively. On the other hand, the mass moment of inerta
inertia of the arm, I*, should be appropriately estimated using a suitable method such
as crude approximation, reference of a look-up table or intelligent means [13]. A general
schematic diagram of the AFC scheme is shown in Figure 1.
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As mentioned before, in the AFC scheme applied to a robot system, the main
computational burden is the multiplication of the estimated inertia matrix with the
angular acceleration of the arm before fed into the AFC feed-forward loop. A suitable
controller Gc(s) has to be determined and the following expression is considered:

G(s)W(s) = 1 (4)

where G(s) = Kt and W(s) = 1/Kt with Kt being the motor torque constant.
Like many other control schemes, the AFC scheme also incorporates classical control

such as the proportional-derivative (PD) control. Specifically, the controller is the
resolved-motion-acceleration-control (RMAC) with PD element that provides the
acceleration command vector signal which when multiplied with a suitable transfer
function produces the required command vector to the main AFC loop. Referring to
Figure 2, the estimated disturbance torques can be described as,

θ= −*
d qT T IN (5)

where Td
* is the estimated disturbances torques, Tq is the measured actuator torque,

IN is the estimated inertia matrix, and θ  is the measured angular acceleration

The actuator torque can also be expressed as

=q t tT K I (6)

where Kt is the motor torque constant available in data sheetsa and It is the armature
current for the torque motor.

Figure 2 The AFC scheme applied to a robot arm
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Thus, Eq. (5) becomes

θ= −*
d t tT K I IN (7)

Note that the torque current (of the motor), It = Ic + Ia where Ic is the current command
vector and Ia the compensated current vector.

4.0 ITERATIVE LEARNING ALGORITHM WITH AFC

Iterative learning control is an approach to improving the transient response performance
of systems that operate repetitively over a fixed time interval [7–12]. It is also known as
“betterment process” or “repetitive control”. In other words, the iterative learning
algorithm will cause the performance of a dynamical system (based on some error
criterion) to become better as time increases. Symbolically, the track error, TE
approaches the zero datum as time heads for infinity, i.e., TE→0 as t→∞. Arimoto
et al. [9] has provided a sufficiently in-depth analysis of the convergence, stability and
robustness of the iterative learning algorithm incidentally employed in the study.

For the AFC     scheme, the iterative learning algorithm is used to estimate the inertia
matrix based on the trajectory track error of the arm when describing a reference
trajectory. The track error [14] may be defined as,

( ) ( )= − + −k bar barTE x x y y
22 (8)

where xbar and ybar are the desired Cartesian coordinates of the end-effector and x and
y are the actual Cartesian coordinates of the end-effector.

Equation (8) is also known as the root of sum-squared track error. It differs slightly
from the one used by Arimoto et al. (absolute track error was used instead) [7–9]. The
purpose of using the sum-squared terms in the equation is to ensure that only positive
values for the TEk were generated since it has been theoretically asserted that the
values of the inertia matrix of the arm should be always positive definite [16]. For the
proposed scheme, the following equation was used,

( )φ Γ+ = + +k k kd / dt TE1IN IN (9)

where +k 1IN      is the next step value of the estimated inertia matrix

kIN      is the current estimated inertia matrix
TEk is the current root of sum-squared track error
φ and Γ  are suitable positive definite constants or learning parameters

The incorporation of the above learning algorithm into the AFC scheme enhances
the system’s performance in terms of its ability to compute IN effectively considering
suitable initial conditions. The inertia matrix could then be fed into the AFC     feed-
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Figure 3 The AFC     and iterative learning control scheme

forward loop to effect the control action. Figure 3 illustrates how the AFCAIL scheme
works. Information about the robot’s trajectory or motion while performing a specific
task is relayed to a feedback sub-system in the outer control loop of the overall control
scheme when the robot moves. This information is compared with the desired reference
trajectory and the difference between the two gives the track error. The resulting track
error is then used by the iterative learning algorithm to determine the inertia matrix of
the arm for the next cycle (the next time instant data is taken or the next sampling
time).
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θ

Consequently, this estimated inertia matrix is introduced into the main AFC loop
where the compensation of the disturbances by way of estimating the disturbance
torques takes place. The robot is thus ‘prepared’ to counter the effects that cause the
previous error and ultimately force the system to behave robustly. The track error was
gradually reduced to minimal value as iteration proceeded and hence producing a
good appropriate value of the inertia matrix in the process.

A schematic block diagram representing the AFCAIL     scheme is shown in Figure
4. Note that the dashed box contains the iterative learning mechanism to compute the
required estimated inertia matrix based on the trajectory track error. A PD control
with suitable controller gains (Kp and Kd) embeds in the resolved-motion-acceleration-
control (RMAC) can be seen in the left hand side of the diagram. By way of applying
a coordinate transformation method, an angular acceleration vector command θref
is produced. This is later multiplied with a suitable transfer function before being fed
into the torque control loop. Disturbances (external), Td, can be introduced to test the
system’s robustness. A number of disturbances are modelled in the study.

5.0 THE STOPPING CRITERION

An iterative method computes successive approximations to the solution of a system
such that the output of the system approaches an appropriate value as the time increases.
The learning process, as it is oftenly referred to, however, is accomplished infinitely
with the possibility of over learning, a term to describe a condition or an instant when
the system is said to have performed excellently but the system keeps on executing
the learning algorithm iteratively but irrelevantly due to the absence of a stopping
mechanism. This condition could lead to instability of the system once it enters a

Figure 4 The AFCAIL scheme
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‘dangerous zone’ where the estimated parameter of the system could no longer
maintains a suitable range of values that ultimately triggers a severe degradation of the
system’s performance [14]. Thus, a mechanism must be incorporated into the algorithm
so that the system knows how to react positively (i.e., stop the iteration) in the event of
the afore-mentioned occurrence. This leads to the design of the stopping criterion as
proposed in the study. The main purpose of the stopping criterion used in this study is
to stop the simulation of the AFCAIL scheme (for a two-link planar manipulator)
automatically if a set of pre-defined stability and accuracy conditions are fulfilled.

The estimated inertia matrix can then be obtained when the system is deemed to
be performing excellently and with a high degree of stability and accuracy. Generally,
the design of stopping criterion has to take into account one or more of the five aspects
below [17]:

(i) The convergence test

A convergence test is the gradual decreasing of error until it reaches a certain
minimal value or zero depending on the accuracy requirements of the test. When
the error reaches an acceptable range, the iterations are stopped.

(ii) The iterations count limit

It is common practice to limit the number of iterations to prevent situations where
the iterative system exhibits no progress towards the solution or progress that is
unacceptably slow. This would be a waste of time and seemingly an unsystematic
and impractical approach.

(iii) Resources to perform/continue the algorithm

Insufficient-resource errors occur when the iterative solver does not have enough
workspace to perform its operations. Therefore the size of the workspace has to
be checked before beginning the iterations. However, with the highly advanced
computers of today, this problem can easily be tackled.

(iv) Breaking down of the algorithm

This is the mathematical condition when the iterative algorithm involves division
by zeros that is undefined.

(v) External error

External errors are errors that are ‘outside’ the iterative system. Being a subsystem,
the iterative learning interacts with other subsystems from which it receives and
sends out signals to. Errors in these signals can cause a breakdown in the learning
algorithm.
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Based on the past simulation results of the AFCAIL     scheme for a two-link horizontal
planar manipulator, a design of the stopping criterion that is based on the convergence
test is chosen as the most appropriate. This is because the iterative learning algorithm
computes the estimated inertia matrix, which is a function of the trajectory error that is
observed to be gradually decreasing with time. Thus, the logical choice would be to
base the design of the stopping criterion on the sum-squared track error from Eq. (8).
The following criteria have been proposed for the AFCAIL scheme:

(i) Criterion 1 – Trajectory error

The trajectory error magnitude converges towards zero and goes below a
magnitude of n m determined by the requirements of the system.

(ii) Criterion 2 – Length of time, t

The trajectory error remains continuously within this range 0 ≤ TEk ≤ n for a
specified period of time, t that will be based on the time taken for each cycle,
tstop. For example, the time required is t = a × tstop where a is the number of
cycles.

The values of n and a are not specified as yet, to create a more general stopping
criterion that can be implemented into any other AFCAIL     scheme. To illustrate the
idea of the proposed stopping criterion design, a reference should be made to Figure
5     where a flow chart of the system is shown.

5.1 Stopping Criterion Model

The proposed stopping criterion model is developed using MATLAB and SIMULINK
tools. Having known the requirements of the system, the task at hand is to design a
subsystem that is able to interact with other subsystems and ensure that an appropriate
level of performance is maintained. The proposed model is shown in Figure 6.

The track error of Eq. (8)     is fed into the sub-system via the In port as shown in the
figure. To obtain a positive value, it is passed through an Abs function. Referring to
Section 5.0, for criterion 1, the trajectory error is handled by a relay switch. For example,
the range of the track error set for the system’s performance deemed to be acceptably
accurate and stable is 0 ≤ TE ≤ 0.0002 m. Thus, the accuracy of the tracking task is
limited within the range. The relay switch dialog box is as shown in Figure 7.

Figure 7 also shows two conditions that are taken into account by the relay switch in
the form of two different outputs considered, one at a time. When the value of TE goes
below 0.0002 m, the switch is turned off thus sending out an output signal of 1. At any
other time, if the value of TE rises above 0.0002 m, the switch will be turned on giving
out an output signal of 0. It is important to note that the frequency of outputs from the
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Figure 5 Flow chart of the proposed stopping criterion
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relay switch depends on the sampling time of the track error system, e.g., if the sampling
time is 0.001 s (track error values are updated for every 0.001 s), the relay switch will be
sending outputs for every 0.001 s.

5.2 Stopwatch Mechanism

The output signals from the relay switch will then be passed on to a summing junction
and also to Switch 1 (Figure 6). When the input to the junction equals to 1 (which is
desirable), two things will happen:

(i) The value 1 will be added to the previous sum stored in the memory block (for
the first time, the sum in the memory block is equal to 0).

(ii) Switch 1 will pass on the constant 0 to be added at the summing junction and
therefore there will be no effect on the summing operation at this point in time. A
threshold value of the switch is set to 0.5, which means if the input is greater or
equal to 0.5, the upper channel of the switch will be switched on and the lower
channel off and vice versa. The dialog box of the switch is shown in Figure 8.

The adding of 1 s will continue throughout the simulation until the track error goes
above the desired range, thus giving the output 0 from the relay switch. When this
happens,

Figure 7 Relay switch dialog box
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(i) Switch 1 will turn on the lower channel, thereby sending the memory value to the
subtraction input of the summing junction. This will cause the previous
cumulative value to be set back to zero.

(ii) The input 0 from the relay switch to the summing junction will not affect the
summation.

The above-mentioned mechanism is similar in operation to how a stopwatch works.
When the value of the track error begins to ‘hit’ the lower limit of the desired range,
the stopwatch is started and kept running whenever the values stay in that range. On
the other hand, if at any moment, the value reaches the upper limit of the desired
range, the stopwatch is stopped and then reset back to zero. This process might have
to be repeated until the stopping criterion are met depending on the behaviour of the
track error pattern.

5.3 Stopping the Simulation

As mentioned before in Section 5.0, in order for the simulation to come to a stop, the
track error needs to be in the desired range for a certain period of time and that it is a
function of the number of repeated cycles the robot is performing its task. The purpose
of including Switch 2 (Figure 6) is to compare the cumulative sums of 1 s with a ‘time
criterion’, t (merely a representation of time) that is given by the equation,

( )= × ×cycle st a t / t1 (11)

where a is the number of cycles the robot is performing desirably, tcycle is the time for
the robot to complete a task in one cycle,  and ts is the sampling time.

Figure 8 Dialog box of switch threshold (set at 0.5)
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The value of a has to be at least 2 (indicating two cycles) in order to enable a clearer
observation of the INININININ values and the track errors computed by the system. When the
sum of 1 s equals t, Switch 2 (that has a threshold value as described by Equation (11)),
will switch on the upper channel of the switch allowing the constant 1 to pass through.
If the sum of 1 s is below t, the constant 0 will be passed through instead.

The final block is the STOP block that stops the simulation when its input is non-
zero. Thus when the criterion, sum of 1 s equals t, the simulation will be stopped
automatically.

6.0 SIMULATION RESULTS

Simulation was performed on the AFCAIL scheme to investigate the effectiveness of
the stopping criterion model. Two loading conditions were considered; one without
disturbances while the other with a set of introduced disturbances.

The parameters of the simulation used in the study were:

Magnitude of the desired track error goal, TE ≤  0.0002 m
Number of desirable cycles, a = 3 (value must be at least 2)
Time for one cycle, tcycle = 3.142 s
Maximum total simulation time = 25 s
Sampling time, ts = 0.001 s

Initial conditions (for the iterative learning algorithm):
IN11 = 0.004 kgm2 and IN22     = 0.002 kgm2

Applied simultaneous disturbances to the robot arm:
Harmonic force, Fh = h sin t where the amplitude, h = 40 N
Spring force, Fs = kx where the spring constant, k = 150 N/m

The results of the simulation can be seen in Figures 9 and 10. A summary of the
results is shown in Table 1.

7.0 ANALYSIS AND DISCUSSION

From graphs of Figure 9, it is observed that the system does not meet the accuracy
requirements determined in the simulation parameters. Thus, the simulation were
executed for the full 25 s (or approximately 8 cycles) without stopping, based on the
criterion set. This provides a clearer picture for the designer of the control system who
has to make necessary alterations to the system if the control scheme is required to
perform excellently in the presence of the introduced disturbances. On the other hand,
the graphs of Figure 10 show that that the system without disturbances readily meets
the set accuracy criterion. The magnitude of the trajectory error remains below 0.0002
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(c)

Figure 9 Simulation results with the applied disturbances

(a)                                                                   (b)

m for three continuous cycles, enabling the simulation to be stopped automatically.
The total simulation time is approximately 9.775 s. Thus the system is said to be
fulfilling criterion 1 (refer to Section 5.0), where the track error goes below 0.0002 m
after about 0.35 s of operation from the starting time.

The set of suitable IN values for each good cycle (refer to Table 1) can be obtained
using the ‘backward method’. The IN     values for the third good cycle are obtained by
taking the IN     values (both IN11 and IN22) for the period of time, tcycle (one cycle)
counted backwards from the total simulation time, the time range being 6.633 –
9.775 s. To obtain the IN values for the second good cycle, the values for the period of
time 3.492 – 6.683 s are taken. The IN values from the period 0.35 – 3.492 s are
considered the appropriate IN as illustrated in Figures 10(b)     and 10(c). The sets of IN
values are therefore more systematically obtained through this method. Another
observation is that the IN values are increasing non-linearly with time from the initial
conditions. Besides that, the IN     values for the system with applied disturbances, are
generally larger than the values for the system without disturbances.
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(c)

Figure 10 Simulation results without disturbances

(a)                                                                   (b)

Table 1 Summary of the simulation results

IN11 IN22

Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3

25 – – – – – –

9.775 3.81-3.94 3.94-4.08 4.08-4.23 1.83-1.95 1.95-2.09 2.09-2.23
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8.0 CONCLUSIONS

The stopping criterion proposed in the study was indeed effective in stopping the
simulation of the AFCAIL scheme automatically when conditions related to the
accuracy and stability of the system are met. There are two main criteria that need to
be determined, namely, the suitable range of the desired track error and the length of
time when the error is said to remain within the acceptable range. The proposed
stopping criterion model has been shown to provide a systematic method in obtaining
suitable values of IN. In addition to that, it can also be used as a tool to study the
effects of changes made to the control scheme related to the parameters, robotic tasks,
operating and loading conditions particularly when the simulation results are not easily
predictable. These could be a subject of future works that could be carried out.
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