Mohamad, Mohd. Saberi and Omatu, Sigeru and Deris, Safaai and Yoshioka, Michifumi (2009) Particle swarm optimization for gene selection in classifying cancer classes. Artificial Life and Robotics, 14 (1). 16 -19. ISSN 1433-5298
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/s10015-009-0712-z
Abstract
The application of microarray data for cancer classification has recently gained in popularity. The main problem that needs to be addressed is the selection of a small subset of genes from the thousands of genes in the data that contribute to a disease. This selection process is difficult due to the availability of a small number of samples compared with the huge number of genes, many irrelevant genes, and noisy genes. Therefore, this article proposes an improved binary particle swarm optimization to select a near-optimal (small) subset of informative genes that is relevant for the cancer classification. Experimental results show that the performance of the proposed method is superior to the standard version of particle swarm optimization (PSO) and other previous related work in terms of classification accuracy and the number of selected genes.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | gene selection, hybrid approach, microarray data, particles warm optimization |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Computer Science and Information System |
ID Code: | 13038 |
Deposited By: | Liza Porijo |
Deposited On: | 14 Jul 2011 01:17 |
Last Modified: | 25 Oct 2017 06:41 |
Repository Staff Only: item control page