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ABSTRACT 

 

 

 

 

 The heat transfer process crucial to the thermoacoustic effects occurs in and near 

the stack region and current technology of the stack material and geometry has room for 

improvement. The latest recommended stack material is Mylar and it has been 

theoretically proven that pin-array stack performs better than other geometry. Stack gap 

recommended varies between researchers using different material and geometry. This 

study looked into the stack performance in terms of the temperature difference achieved 

between the stack ends for various locally available materials at different thickness and 

geometry. Experiments were conducted using PVC resonator tube with paper and film 

material as stack, at 0.1 and 0.2mm thickness. Parallel plate, spiral roll and the 

honeycomb geometry were tested. Results showed that the parallel plate stack made 

from the film gave higher temperature difference compared to that from paper operating 

with a stack gap of 0.45mm. A maximum of 3.5°C below the ambient temperature was 

achieved at the “cold” end for the system operating at 1atm and 22~24°C. 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRAK 

 

 

 

 

 Proses pemindahan haba yang penting untuk kesan termoakustik berlaku 

berhampiran dan di kawasan ‘stack’ dan teknologi terkini pada bahan ‘stack’ dan 

geometrinya masih ada ruang untuk dilakukan pembaikan padanya. ‘Stack’ yang terkini 

yang dicadangkan ialah Mylar dan telah telah dibuktikan secara teori yang susunan pin 

memberikan keputusan yang lebih baik berbanding geometri yang lain. Celah ‘stack’ 

telah dicadangkan oleh beberapa penyelidik dengan bahan dan geometri yang berlainan. 

Kajian ini adalah untuk melihat prestasi ‘stack’ dari aspek perbezaan suhu yang akan 

dicapai di hujung ‘stack’ untuk pelbagai jenis bahan pada ketebalan dan geometri yang 

berbeza. Ujikaji di lakukan pada kertas dan filem pada ketebalan 0.1mm dan 0.2mm. 

Geometri jenis plat selari, lingkaran dan ‘honeycomb’ pula akan di uji. Keputusan 

menunjukkan plat selari filem menghasilan beza suhu yang lebih berbanding dengan plat 

selari kertas dengan celah gap 0.45mm. Suhu maksimum 3.5°C dibawah suhu sekitaran 

telah dicapai pada hujung sejukuntuk system yang beroperasi pada 1atm dan 22~24°C. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Nikolaus Rott (1980) defined thermoacoustic as studies generally dealing with 

effects in acoustic in which heat conduction and entropy of a medium play a role. 

 If a system converts acoustic into energy, it is called a thermoacoustic 

refrigerator while a system converting energy to acoustic is called a thermoacoustic 

prime mover. There are two modes of a thermoacoustic system: the small standing wave 

thermoacoustic and traveling wave thermoacoustic. This study will focus on the standing 

wave thermoacoustic. 

In 1777, Byron Higgins discovered thermoacoustic. Even though this is not a 

refrigeration system, the thermoacoustic effects have initiated investigations. For 

example, Sondhauss in the year 1850 had started a thermoacoustic oscillation research 

which was the best research of this category. Table 1 shows some of the studies done so 

far. 
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Table 1.1: Thermoacoustic History 

 

Year By Comments 

The beginnings 

1777 Byron Higgins 

(B. Higgins, 1802) 

Investigation of organ pipe type oscillations known as 

‘singing flames’. Hydrogen was used at the open end. 

(See Figure 1.1) 

The interest  

1850 C. Sondhauss 

(C. Sondhauss,1850) 

The best thermoacoustic oscillation research. Sondhauss 

tube is an open tube terminated in a bulb on the other 

and. (See Figure 1.2) 

1859 Petrus Leonardus 

Rijke 

(P.L.Rijke, 1859) 

Strong oscillation occurred when a wire screen is heated 

in a lower half of an open-ended pipe.  

This kind of tube was name ‘Rijke Tube’. (See Figure 

1.3) 

1868 Gustav Robert 

Kirchhoff 

(G. Kirchhoff, 1868) 

One of the earliest theoretical thermoacoustic studies. 

Involves the calculation of acoustic attenuation in a duct 

due to oscillatory heat transfer between solid isothermal 

duct wall and a gas sustaining sound wave. 

1887 Lord Rayleigh 

(L. Rayleigh, 1945) 

Qualitative explanation on Sondhauss oscillation.  

1949 K.W. Taconis and 

J.J.M Beenakker 

(K.W. Taconis et al, 

1949) 

Taconis Oscillation which occurs in cryogenic storage 

vessels was discovered.  

Theoretical study  

1962 R.L Carter, M. White 

and A.M. Steele 

(R.L.Carter et al,1962) 

Improved Sondhauss tubes performance was found with 

placing suitable structures such as a stack. 

1966 W.E.Gifford and R.C. A pulse tube refrigerator with a low temperature 
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Longsworth 

(W.E. Gifford et al, 

1966) 

difference was developed. The ratio between the cold 

and hot temperature is only 0.5 and this system operated 

at 1Hz with a pressure ratio of 4. (See Figure 1.4) 

1975 P.Merkli and 

H.Thomann 

(P. Merkli et al, 1975) 

Observed cooling effect around the velocity at antinodes 

in cylindrical resonator and present a good explanation 

and accurate theory for the effect. 

1980 N. Rott 

(N. Rott,1980) 

Study of the thermoacoustic theory. Rott’s theory of 

thermoacoustic is considered the successful linear 

thermoacoustic theory.  

1983 J.C. Wheatley, T. J. 

Hofler, G.W. Swift 

and A. Migliori 

(J.C. Wheatley et al, 

1986) 

Experiment on thermoacoustic heat engines. Develop a 

device known as ‘thermoacoustic couple’ or TAC with a 

good agreement with Rott’s theory. This, however only 

produces small temperature difference. 

Development  

1986 T.J. Hofler 

(T.J. Hofler, 1986) 

The first Thermoacoustic Refrigeration created. This 

device has a cooling power of 6W using with 10.2 Bar 

Helium as the pressurized gas. 

1992 S. L.Garrett, 

T.J.Hofler, J. Adeff 

and others 

(S. L.Garrett et al, 

1989) 

Develop a Space Thermoacoustic Refrigerator (STAR) 

This thermoacoustic refrigeration was flown on the 

Space Shuttle Discovery (STS-42) in January, 1992 with 

cooling power of  5W with mixed gas of 97.2% Helium 

and 2.7% Xenon in 10 atm pressurized. 

2001 M.E.H. Tijani 

(M.E.H. Tijani,2001) 

 

Develop thermoacoustic refrigeration with Cooling 

power of 4W using various mixed of gaseous such as: 

Helium / Helium-Argon / Helium-Kripton / Helium-

Xenon with 10 bar of pressure.  

2002  Cryogenics Division of Sumitomo Heavy Industries, Ltd 

was established. This company produced ‘pulse tube 

cryocooler.’ It is considered as the 1st commercial 

thermoacoustic refrigeration. 
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2004 Poese, M.E, S. Garrett 
and R. Smith 

Develop commercial thermoacoustic chiller for Ben & 

Jerry’s ice-cream. This collaboration was because of 

interest of environmental effect form the commercial 

refrigeration. The chiller has cooling power of 119 Watts 

With Helium in 10 atm pressure. 

 

 
Figure 1.1:  Singing Flame apparatus. (M.E.H. Tijani, 2001) 

 
Figure 1.2:  Sondhauss Tube (M.E.H. Tijani, 2001) 
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Figure 1.3:  Rijke Tube (M.E.H. Tijani, 2001) 

 
Figure 1.4:  Pulse tube refrigerator (G.W. Swift, 1988) 

 

The stack (also referred to as regenerators by some authors) is the place where 

the heat pumping process takes place. It should be located close to the pressure antinode 

of a standing wave. Figure 1.5 (a) shows a schematic of the stack and other important 

parts of the thermoacoustic refrigeration system. Because the location must be close to 

the pressure antinode, there are two ways of putting the stack in the resonator as shown 

in Figure 1.6. 

It was Carter, et all (Carter, 1962) who were responsible of introducing the stack 

in the thermoacoustic system. Starting from here, the stack was used to increase the 

thermoacoustic effects. In 1980 Rott (N. Rott, 1980) studied the circular and parallel 
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stack. Later, his study on the stack was put into the Rott’s Function diagram, a diagram 

which is important in determining the stack boundary layers. (G.W.Swift, 1988) 

J.C. Wheatley, et al (J. C. Wheatley et al, 1986) then used tungsten as a stack 

with parallel plate geometry for his patented thermoacoustic device in 1986. In the same 

year, T.J. Hofler (T.J. Hofler, 1986) then used a camera film as a stack with spiral 

geometry for his PhD. His geometry was considered simple to fabricate. He also used 

fiber glass parallel plate stack for his Hofler Tube that was used to demonstrate to his 

students about the thermoacoustic effects. A year after that, J.C. Wheatley (J. C. 

Wheatley et al, 1986) used stainless steel parallel plate for his beer cooler. 

G.W.Swift (G.W.Swift et al, 1990) then patented his Acoustic Crycooler in 1990. 

This Acoustic Crycooler used stainless steel parallel plates and Kapton sheet spiral 

wound as stack. W.P.Arnott, et al (W.P.Arnott et al, 1991) then studied square, 

rectangular and triangular pores for the stack. The studies of these stacks were added 

into the Rott’s function diagram in the year 1991. 

In 1992, STAR thermoacoustic refrigeration system was developed using 

Mylar™ with spiral roll as the stack. This was the big turning point in stack 

development, as many researchers after that used Mylar™ as stack because of its 

success. R.M. Keolian and G.W Swift (R. M. Keolian et al, 1995) and M.E. Hayden and 

G.W Swift (M.E. Hayden et al, 1997) mentioned the pin array stack. They proved that 

the pin-array is the best geometry for the stack. The main problem is the difficulties in 

fabricating the stack. With pin-array stack the problem of using low conductivity stack 

material does not arise.  

M.E. Poese (M.E. Poese, 1998)) and M.E.H Tijani (M.E.H. Tijani, 2001) then 

used parallel plates with Mylar™ as the stack. O.G. Symsko in 2003 and 2004 used 

cotton wool and glass wool as the stack for his patented thermoacoustic refrigerator. It 

seems that stack material is still being studied for the development of a better 

thermoacoustic system. 
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1.2 Importance of the stack  

 

 

The stack is considered as the heart of a thermoacoustic system. Development 

and continuous improvement of it can better the overall performance of a 

thermoacoustic system. The heat transfer process crucial to thermoacoustic effects 

occurs in and near the stack region and current technology of the stack material and 

geometry has room for improvement based on the background completed. Various 

researchers have recommended various stack gap using latest discovery of the best 

performance stack material (i.e. Mylar). Theoretical analysis has shown a pin-array as 

better than parallel plate but the spiral roll kind is easiest to be fabricated with an 

acceptable ease. This study will look into possibility of using locally available materials 

with ease of assembly to produce optimized thermoacoustic effects 

 

 

 

 

1.3 Objectives 

 

 

The objective of this project is to identify the optimized stack geometry 

(material) of a thermoacoustic system. 
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1.4 Scope  

 

 

The scopes are: 

• To analyze the factors that affects the thermal performance of current 

thermoacoustic stacks. 

• To design and fabricate stacks for various materials (paper and film) 

• To perform tests and analyses on the stack performance based on the 

temperature difference attained across the stack. 

 

Stack

 
Figure 1.5:  (a) A simple thermoacoustic refrigeration system (b) the temperature 

distribution along the resonance tube 

Heat 
Exchanger 

Resonator 
Driver/ 
Speaker 

(a) 

T 

∆T 

x 

(b) 



 9

Hot Heat 
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Cold Heat 
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Figure 1.6: Stack position for λ/2 resonator 
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