Universiti Teknologi Malaysia Institutional Repository

A study of network-based approach for cancer classification

Deris, Safaai and Jumali, R. and Hashim , Suhairul Z. M. and Misman, Muhammad Faiz and Mohamad, Mohd. Saberi (2009) A study of network-based approach for cancer classification. In: 2009 International Conference on Information Management and Engineering, ICIME 2009, Kuala Lumpur, 3rd - 5th Apr 2009.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1109/ICIME.2009.104

Abstract

The advent of high-throughput techniques such as microarray data enabled researchers to elucidate process in a cell that fruitfully useful for pathological and medical. For such opportunities, microarray gene expression data have been explored and applied for various types of studies e.g. gene association, gene classification and construction of gene network. Unfortunately, since gene expression data naturally have a few of samples and thousands of genes, this leads to a biological and technical problems. Thus, the availability of artificial intelligence techniques couples with statistical methods can give promising results for addressing the problems. These approaches derive two well known methods: supervised and unsupervised. Whenever possible, these two superior methods can work well in classification and clustering in term of class discovery and class prediction. Significantly, in this paper we will review the benefit of network-based in term of interaction data for classification in identification of class cancer.

Item Type:Conference or Workshop Item (Paper)
Additional Information:ISBN : 978-076953595-1
Uncontrolled Keywords:classification, DNA microarray data, interaction gene
Subjects:Q Science > QA Mathematics > QA76 Computer software
T Technology > T Technology (General)
Divisions:Computer Science and Information System (Formerly known)
ID Code:12901
Deposited By: Ms Zalinda Shuratman
Deposited On:07 Jul 2011 04:34
Last Modified:07 Jul 2011 04:34

Repository Staff Only: item control page