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ABSTRACT 
 
 
 
 

This research focused on the development of new thin film electrolytes based 
on Poly(methyl methacrylate)(PMMA) / 50% epoxidised natural rubber (ENR 50) 
blend by solvent casting method. Lithium nitrate (LiNO3), lithium triflate (LiCF3SO3) 
and lithium imides (LiN(CF3SO2) 2) salts were used as the doping material to provide 
lithium ion for the ionic conduction. Dimethyl carbonate (DMC), ethylene carbonate 
(EC) and propylene carbonate (PC) plasticizers were used to improve the physical 
properties and the morphology of the films. Freestanding films were obtained when 
PMMA was blended with 10% and 20% of ENR 50. Above these compositions, the 
films became brittle and bonded strongly to the glass substrate. The blend films were 
not homogeneous in which the phase separation can be observed in their FESEM 
micrographs even in the presence of plasticizers. Though the films were not 
homogeneous, the brittle properties of PMMA film have been improved. The DSC 
thermograms of these films further confirmed the in-homogeneity of the blends by 
exhibiting two glass transition temperatures, Tg. The infra red (IR) spectra 
established the PMMA-ENR 50 interactions and the polymer-salt complexation. 
Doped PMMA / ENR 50 films with LiNO3 salt were observed to be unstable where 
by the films obtained became damp and opaque when exposed to the ambient 
environment. It was observed that the best salt for this PMMA / ENR 50 blend was 
LiCF3SO3 in which the highest conductivity of 10-5 S/cm at room temperature were 
obtained. On the other hand, PMMA / ENR 50 / LiN(CF3SO2) 2 electrolyte exhibited 
the lowest ionic conductivity of 10-7 S/cm at room temperature.  The effect of 
plasticizers differs from one electrolyte system to another.  The ionic conduction 
behaviour in the electrolyte systems depends on the salt and the plasticizers used.  
The transference number and the modulus formalism showed that the PMMA / ENR 
50 blend based electrolytes were ionic conductor. The equivalent circuit for the 
highest conducting film from each plasticized or non-plasticized electrolyte system 
was determined using Autolab software.  Films with 10-5 S/cm at room temperature 
were fabricated into LiNiCoO2/ polymer electrolyte / mesocarbon microbeads 
(MCMB) cell.  It was observed that these cells exhibit poor charge-discharge 
characteristic and can be improved.  
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ABSTRAK 
 
 
 
 

Kajian ini memfokuskan kepada penyediaan filem baru elektrolit polimer 
berasaskan campuran poli(metil metakrilat) (PMMA) / 50% getah terepoksida (ENR 
50) dengan kaedah “solvent casting”.  Garam litium nitrat (LiNO3),  litium triflat 
(LiCF3SO3) dan litium imida (LiN(CF3SO2) 2) telah digunakan sebagai dopan dalam 
penyediaan elektrolit polimer berasaskan PMMA / ENR 50.  Dimetil karbonat, 
(DMC)  etilena karbonat, (EC)  dan propilena karbonat (PC) telah digunakan sebagai 
bahan pemplastik untuk membantu memperbaiki morfologi filem elektrolit. Filem 
elektrolit polimer ini telah berjaya dihasilkan apabila 10% dan 20% ENR 50 
ditambah ke dalam campuran.  Filem menjadi semakin rapuh dan sukar dipisahkan 
daripada acuan apabila komposisi ENR 50 dalam campuran melebihi 20%.  Kesemua 
filem berasaskan PMMA/ ENR 50 ini adalah tidak homogen yang mana pemisahan 
fasa dapat dilihat dengan jelas pada permukaan filem. Malahan, ianya telah dapat 
dibuktikan melalui analisis permukaan menggunakan mikroskop pengimbasan 
elektron, FESEM. Walau bagaimanapun, penyediaan elektrolit berasaskan campuran 
ini diteruskan kerana kerapuhan filem PMMA telah dapat diperbaiki. Analisis 
pengimbas kalorimetri, DSC pula telah  menunjukkan kehadiran dua suhu peralihan 
kaca, Tg. Daripada analisis spektrum infra merah (IR), didapati telah terbentuknya 
interaksi antara kedua-dua  polimer dan pembentukan  kompleks antara polimer dan 
garam. Dopan LiNO3 memberikan filem yang paling tidak stabil yang mana filem 
menjadi lembab dan  bertukar opak apabila didedahkan kepada sekitaran. Garam 
LiCF3SO3 telah menunjukkan konduktiviti filem terbaik dengan nilai 10-5 S/cm pada 
suhu bilik manakala filem PMMA / ENR 50 / LiN(CF3SO2) 2 pula menunjukkan nilai 
yang sangat rendah dengan konduktiviti tertinggi yang dapat dicapai hanyalah 10-7 
S/cm. Kehadiran bahan pemplastik telah menunjukkan kesan yang berbeza-beza 
antara satu sistem elektrolit dengan sistem elektrolit yang lain. Modul pergerakan ion 
di dalam campuran polimer ini juga bergantung kepada garam dan bahan pemplastik 
yang digunakan. Daripada penentuan nombor angkutan dan analisis modulus 
didapati elektrolit polimer ini adalah konduktor ionik. Kesepadanan litar bagi 
kesemua sistem dengan kekonduksian ionik tertinggi telah ditentukan dengan 
menggunakan perisian Autolab.  Filem dengan kekonduksian minima 10-5 S/cm telah 
digunakan sebagai elektrolit bateri sekunder dalam  sel LiNiCoO2 / elektrolit polimer 
/ “mesocarbon microbeads” (MCMB). Didapati sel ini telah menunjukkan sedikit 
kelemahan dalam prestasi cas-discasnya dan masih boleh diperbaiki.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 
 
 

 

Conventional liquid electrolytes had been extensively studied and their 

potential had also been proven and discussed elsewhere. However, liquid electrolytes 

are facing major problems that are to date remain unsolved. Among the major 

problems are leakage of corrosive, flammable and toxic liquids or gaseous. For 

safety and environmental reasons, solid electrolytes are the potential candidates to 

overcome these problems and soon to replace all liquid-based electrolytes for 

practical electrochemical devices such as power sources, smart window and displays 

(Gray, 1991).  

 

The development of new solid electrolyte material is creating opportunities 

for new types of electrical power generation and storage system. There are many 

types of solid electrolyte systems, which include solid crystalline electrolytes, glass 

electrolytes, molten electrolytes and polymeric electrolytes. This work will focus on 

fabricating and characterizing solid polymer-based thin film electrolytes for 

secondary battery application. 

 

Although, polymeric materials are not single-ion conductors, they are not 

hard and brittle materials like solid crystalline and glassy electrolyte. It has 

mechanical properties that make it suitable to be constructed in all solid-state 

electrochemical cells. At macroscopic level, high molecular weight amorphous 

polymer may exhibit properties that are attributes of a true solid, but at atomic level, 
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local relaxation provides liquid-like degree of freedom that is not significantly 

different to a conventional liquid.  

 

Below are the critical characteristics that a polymeric material should possess 

before considering them as practical replacements for their liquid counterparts: 

  

a) Can easily be fabricated into thin flexible films using existing plastic-film 

production plant. 

b) They must exhibit adequate ionic conductivity with low electronic 

conductivity for practical purposes 

c) Compatible with the battery electrode. Chemically and electrochemically 

stable towards the electrodes. 

d) Large voltage / over voltage stability to achieve complete recharge in 

rechargeable system. 

e) Also stable against other degradation such as impurities and environment 

parameters such as temperature. 

 

Since a cell is designed for operations at elevated temperature, therefore it is 

important that the macroscopic and molecular properties of the polymer material 

remain constant.    

 

This chapter will discuss some fundamental aspects in the research area of 

polymer electrolytes to understand why certain materials are selected and a particular 

technique is employed in this work. 
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1.1 Classification of Polymer Electrolytes  

 

Polymer electrolytes can be defined or classified as one of the following 

categories: 

 

a) A Solvent Free System 

 

The ionically conducting solid phase systems are formed by 

dissolution of salts in high molecular weight polar polymer matrix by ion–

coordination. This class of material is the most extensively studied because of 

ease of preparation. Examples of this kind of polymers are poly(vinyl 

chloride) (PVC) / LiClO4 (Ramesh et al., 1998) and poly(ethylene oxide) 

(PEO) / NaNO3 (Ramalingaiah et al., 1998) complexes. 

 

b) A Gel Electrolyte System  

 

This material is formed by dissolving a salt in a polar liquid and an 

inactive polymeric material is added to improve the mechanical stability. The 

basic polymer host swelled in the electrolyte solutions and the dopant ionic 

solute is accommodated in the swollen lattice sites. The ionic motion takes 

place in this solvent rich swollen region of the polymer. However, these 

materials are generally unstable since their conductivity is highly dependent 

on the concentration of the solvent in the swollen region (Chandra and 

Chandra, 1994). Examples of this class of materials are poly(methyl 

methacrylate) (PMMA) in liquid electrolyte ethylene carbonate (EC) / 

propylene carbonate (PC) containing benzoic acid (Ericson et al., 2000), 

poly(acrylonitrile) (PAN) / dimethyl sulfoxide (DMSO) / AgCl 

(Lewandowski and Stepniak, 2000) systems.  

 

c) A Plasticized Electrolyte System 

 

This system is similar to a gel electrolyte except a small amount of 

high dielectric constant of solvent is added to the system to enhance the 
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conductivity of the conducting polymer electrolyte. Example of this type of 

system is PAN / EC/PC/ LiClO4 (Rajendran et al., 2001a). 

 

d) A Membrane Ionomer / Proton-conducting Polyelectrolyte System:  

 

This class of polymer has self ion-generating groups attached to the 

main chain of the polymer host that are responsible for the ionic conductivity 

(Slade et al., 1983). These materials normally consisted of a material 

comprising a fluorocarbon polymer backbone to which sulfonic acid groups 

have chemically bonded. A plasticizer (typically water) is also required to 

achieve excellent conductivity levels. The unique property of this material is 

that only single ion transport, either the anions or the cations that are 

responsible for the ionic conduction that occur in the bulk. Example of this 

type of material is sodium polystyrene sulphate.   

 

The original concept of polymer electrolyte is the solvent-free electrolyte 

system. However, electrochemical cells based on this type of materials are currently 

under development because of their relatively low ionic conductivity especially at 

room temperature. This is due to their poor electrode-electrolyte contact. Therefore, 

many researchers had turn to gel and plasticized type electrolytes for 

commercialization purposes.  These systems exhibited relatively high ionic 

conductivity. In fact, gel electrolyte systems had been developed and tested in 

electrochemical cells by the industrial community.  

 

All the first three classes of polymer electrolytes mentioned above are being 

developed for battery applications. However, polyelectrolyte membranes are more 

concerned in the development of fuel cell technology. This type of polymer 

electrolytes is used in proton- exchange membrane (PEM) fuel cells, which also 

known as solid polymer electrolyte fuel cell (SPEFC). 
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1.2 Polymer Electrolytes Background 

 

For many years polymers are known as insulators i.e. unable to conduct 

electricity and widely used as cable protector, etc. As the technology in synthesizing 

polymers was advancing, a new class of material called conducting polymers was 

produced. These materials usually had conjugated bonds in their polymer chain. The 

delocalization of the pie (π) electrons along the polymer backbones produced metal-

like conductivity. Examples of these types of polymers are polyacetylene, 

polyphenylene, etc. 

 

However, in the 70’s researchers had found that a non conducting polymer, 

polyethylene oxide, PEO became conducting when lithium salt was added into the 

polymer matrix. This class of material is called polymer electrolyte. Fenton and co-

workers (1973) was the first group to discover polymer electrolyte material. 

However, the finding has not been appreciated until Armand et al. (1978) realized 

the potential of this material in electrochemical system. In their early work, they had 

discovered conducting potential of PEO when doped with lithium salts. To date PEO 

has been the most widely studied (Kim and Smotkin, 2002; Choi et al., 1997) 

polymer host because it contains only unstrained CO, CC and CH bonds. Moreover, 

it is chemically and electrochemically stable. A wide variety of salts based on alkali 

metal, alkaline earth metal, transition metal and lanthanide ions with concentrations 

exceeding 2 mol/dm3 are also soluble in the pure polymer (Bruce et al., 1993).  

However, this material has been excluded from practical applications due to its high 

melting points of crystalline phase and low ionic conductivity at room temperature 

(Wright et al., 1975).  

 

Since the potential of these materials have been realized for commercial 

exploitation, other polymers such as PAN (Ileperuma et al., 2002; Rajendran et al., 

2001a), poly(vinylidene fluoride) (PVdF) (Wang and Gu, 2002; Jiang et al., 1997), 

PMMA (Bohnke et al., 1993a, 1993b; Chen et al., 2002), PVC (Langmaier et al., 

1997; Ramesh et al., 2002a, 2002b) had been proposed as a host in electrolyte system. 

Recently, natural polymer such as chitosan (Yahya et al., 2000; Subban et al., 1996) 

had also been studied. 
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1.3 Why Polymer Electrolytes 

 

Polymer electrolytes had played an important role in solid state ionics due to 

their unique properties (Chandra and Chandra, 1994) such as: 

 

a) Ease of fabrication into thin film with large surface area hence giving 

high energy density, 

b) The ability to accommodate a wide range of doping compositions of ionic 

salts, 

c) Provide good electrode-electrolyte contact, 

d) Exhibited high ionic conductivity, 

e) Mouldability that allows a battery to be fabricated in any shape and 

design of various dimensions, 

f) The flexible nature of the polymer can also accommodate volume 

changes in the cell during cycling without physical degradation at the 

electrode-electrolyte interfacial. 

 

 

 

1.4 The Characteristics of a Polymer Host  

 

Below are the essential characteristics that a polymer or the active part of a 

copolymer must satisfy in order to become a successful polymer host (Ratner, 1987, 

Gray, 1991). These are the main guidelines when choosing a polymer as a host in an 

electrolyte system.  

 

a) Atoms or groups of atoms with lone pair electrons to form coordinate 

bonds with the cations of the doping salt. Therefore, the polymer is able 

to solvate the salt via the interaction between the lone pair electrons and 

the cations of the salt, 

b) The segmental motion of the polymer chain can take place readily, 

c) A flexible polymer chain to ensure effective solvation of cations and to 

provide favourable solvation entropy, 

d) Low glass transition temperature. 
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1.5 Characteristic of the Doping Salt   

 
Most pure polymers are non-conducting materials. Their conductivities are 

way below the significant value. By incorporating additives such as salts, they are 

able to become ionic conductor. The additive added into the polymer is called a 

dopant and the process is called doping. 

 

The lattice energy of the salts should also be put into consideration when 

choosing a doping material since it plays an important role in the formation of 

polymer-salt complex. The lattice energy of the salts should be low so that the salts 

can easily be dissolved in the polymer matrix. Usually salts with large anions such as 

CF3SO3
-, (CF3SO2)2

-, ClO4
-, NO3

-, SCN-, I- have low lattice energy. Most attention 

has focused principally on a small group of lithium and sodium salts that form 

polymer electrolytes of potential commercial interest.  

 

 

 

 

1.6 Preparation Of Polymer Electrolytes  

 

There are several methods in the preparation of polymer electrolyte 

thin film: 

 

a) Solvent Casting Technique 

 

Solvent casting is the most common and easiest method of preparing 

thin film polymer electrolyte. This involves dissolving polymer and salt in an 

appropriate solvent. The solution is then cast into specific petri dish and left 

to dry. Thin film is obtained after solvent evaporation. There are two 

significant stages in the electrolyte formation. In the dissolution process, the 

casting solvent overcomes the lattice energy of the salt. Then the salt is 

transferred from the casting solvent to the polymer that acts as an immobile 

solvent (Vincent, 1987). In this technique, the crystal formation may be 

affected by the nature of the solvent, evaporation rate, and by the solvent 
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residue. The final drying temperature also plays an important role in the 

structure of the polymer film. 

 

b) Melt  or Hot Pressing  

  

This method was developed by Gray et al. (1986; Patent No. 

8619049).  In this technique, the polymer is grind into a fine powder under 

liquid nitrogen and appropriate quantities of polymer and salt are then milled 

together to form an intimate mixture. The mixture is then annealed at 120-

150°C and cooled under pressure to form thin films. This method avoids the 

presence of residual solvent in the resulting films and is best employed when 

dealing with co-mixed polymer systems. 

 

c) Plasma Polymerization  

 

Ultra thin polymer electrolyte films of the order of 1 µm thick can be 

fabricated using this method (Uchimoto et al., 1990).  

 

 

 

 

 1.7 Modification of Polymer Host  

 

There are several methods that had been adopted in order to enhance the 

conductivity or the structure of the polymer:  

 

a) Copolymerization 

  

Polymer-salt systems may be amorphous, crystalline or amorphous-

crystalline mixtures depending on the polymer, salt, and preparative 

conditions. Originally ionic conductivity was considered to occur in the 

regular crystalline lattices. However, it is now known that such phases are 

electrical insulators and that ion transport occurs principally in amorphous 

regions (Berthier et al., 1983). Simple linear homopolymers are prone to 
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crystallization and form stoichiometric crystalline phases with salt. Therefore, 

by adding another polymer that has a lower Tg to the original polymer host 

will lead to the formation of a flexible polymer backbone hence increasing 

the conductivity.  PEO-poly(propylene oxide) (PPO) copolymer complexed 

with alkali metal salt (Passimiemi et al., 1988) is one of the example of this 

type of polymer.    

 

b) Plasticization 

  

A plasticizer helps to assist in the dissolution and dissociation of salts 

and thus increase the number of mobile charges. It is also able to reduce the 

viscosity of the electrolyte and therefore help to facilitate the movement of 

charge carriers along the polymer backbone and thereby enhancing the ionic 

conductivity (Kelly et al., 1985). The most important advantage of plasticized 

polymer electrolytes is that they exhibit relatively higher ionic conductivity 

compared to other polymer electrolyte groups. However, its major drawbacks 

are poor mechanical properties due to high degree of plasticization, solvent 

volatility and reactivity of polar solvent with the lithium electrode. Examples 

of these systems are PEO/EC/LiClO4 (Qian et al., 2002) and PVC / dibutyl 

phthalate (DBP) / LiBF4 (Golodnitsky et al., 1996). 

 

c) Blending  

  

Polymer blending is one of the useful techniques for designing new 

materials with various properties. Among the advantages of employing this 

method are simplicity of preparation and easy to control physical properties 

by compositional change (Acosta and Morales, 1996; Rocco et al., 2001). 

The new polymer blends often exhibit properties that are superior compared 

to the properties of each individual component polymer (Rhoo et al., 1997; 

Oh and Kim, 1999; Pielichowski, 1999; Stephen et al., 2000; Tang et al., 

2000; Pielichowski and Hamerton, 2000). Examples of polymer blending 

systems are poly (vinyl chloride)/polypyrrole (Pruneanu et al., 1997), 

PVC/PMMA (Stephan et al., 2000).  Recently blending of polyanilline with 

nitrilic rubber has also been reported (Vallin et al., 2000).   
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d) Addition of Ceramic Fillers/Additive  

 

The addition of ceramic/inorganic fillers has been reported not only to 

improve the ionic conductivity but also the mechanical stability of the system. 

Some examples of inorganic fillers that had been used for this purpose are 

SiO2 (Quartrone et al., 1998) and Al2O3 (Golodnitsky et al., 1996). 

 

 

 

 

1.8 Applications Of Polymer Electrolyte  

 

The unique properties of these materials make them possible to be applied in 

a wide range of electrochemical devices especially in primary and secondary 

batteries and ambient temperature fuel cells. Other practical applications that are 

under consideration include electrochromic devices, modified electrodes/sensors, 

solid-state reference electrode systems, supercapacitors, etc. 

 

However, the main concern of many solid state researchers is the 

development of secondary lithium batteries. The major advantages in developing 

polymer based electrolyte batteries are: 

 

a) The internal resistance of a cell may be reduced when the electrolytes are 

fabricated into large-area thin films. Uniquely, this can still be possible 

even at a moderate conductivity.  

b) A complete thin large-area cell can be operated at relatively low current 

density, while still permitting the battery to be operating at practical rates. 

Typical cell dimensions are ~15 – 30 µm thick electrolyte, 25 – 50 µm 

thick Li electrode and 20 – 100 µm composite cathode are a good 

combination of a unique battery cell structure that permit high values of 

specific energy and power to be achieved. 

c) Intimate contact with the cell electrode can be established hence facilitate 

good interfacial transport. 
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d) The incorporation of elastomeric electrolyte phase will help to 

accommodate volume changes during cycling.   

 

The polymer electrolyte plays three important roles in the solid polymer 

electrolyte (SPE) battery: 

 

a) It is a lithium ion carrier  

b) It acts as an electrode spacer, which eliminates the need to incorporate an 

inert porous separator. 

c) It is a binder, which ensures good electrical contact with the electrodes 

and can be maintained at all times through charging and discharging. 

 

The replacement of the liquid electrolyte by plastic material solved the 

problems associated with corrosive or powerful solvents that may react with seals 

and containers.  The absence of gas formation and any significant vapour pressure 

during operation, permit the battery to be packaged in low-pressure containers such 

as plastic-metal barrier. The SPE batteries should then be readily manufactured using 

highly automated existing plastic film techniques.  

 

 

 

 

1.9 Problem Statements 

 

a) The conventional liquid electrolytes are facing leakage toxic and 

corrosive liquids or gaseous problems which are to date remain 

unsolved.  

b) Solid base polymer electrolytes are currently under development due 

to its poor electrode-electrolyte contact. 

c) To the best of our knowledge, solid PMMA film has not been realized 

in SPE batteries due to its brittle properties that gave poor electrode-

electrolyte contact. 
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1.10 Objectives 

 

The objectives of this work are: 

  

a) To prepare soft and flexible freestanding films of PMMA / ENR 50 blend 

by solvent casting method. 

b) To obtain a minimum ionic conductivity of 10-5 S/cm at room temperature 

from PMMA / ENR 50 based electrolytes. The minimum conductivity of 

10-5 S/cm has been used as the criterion for possible application purposes 

(Gray,1991). 

c) To investigate the performance of PMMA / ENR 50 electrolyte in solid 

polymer electrolyte lithium batteries. 

 

 

 

 

1.11  Research Scope 

  

 

1.11.1 Selection of Materials 

 

In this work poly (methyl methacrylate), PMMA is used as the main polymer 

host. PMMA is chosen because it has oxygen atoms in its polymer chain. These 

oxygen atoms have lone pair electrons that are expected to form coordinate bonds 

with lithium salts hence establish the PMMA-lithium salt complex.  From previous 

literatures, this material exhibited acceptable conductivity value. However, the high 

ionic conductivities are achieved when the material is fabricated into a gel form. This 

material also is found to give better interfacial properties towards lithium electrodes 

(Appetecchi et al., 1995, Abraham et al., 1990).  

 

In this work solid PMMA based electrolyte in a form of thin free standing 

films are to be fabricated by solution cast technique. This technique is the most 
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common method of preparing polymer electrolyte because of ease of preparation. 

The solvent used in this work is tetrahydrofuran, THF, which is the best solvent to 

dissolve both PMMA and ENR 50 and a film can be formed after solvent 

evaporation.  

 

Since PMMA alone form a brittle film, therefore 50% epoxidised natural 

rubber (ENR 50) is added to improve the brittle properties of PMMA films and 

therefore a freestanding film of PMMA can be obtained. ENR 50 is chosen based on 

its soft elastomeric, good elasticity and adhesion properties. In addition, it contains 

oxygen atom(s) in their structure. These oxygen atoms may provide extra 

coordinating sites for lithium ions. In fact, Idris et al. (2001) and Glasse et al. (2002) 

had worked on various types of epoxidised natural rubber i.e. ENR 25, ENR 50 and 

ENR 60. The conductivities achieved for the systems are between 10-6 to 10-4 S/cm. 

Various amount of ENR 50 will be added into fixed amount of PMMA until the best 

compositions that produced a thin, flexible and free standing films of PMMA / ENR 

50 are obtained. Note that the term “blending” is adopted to explain the process of 

mixing of the two polymers. However, the homogeneity of the blending is not the 

main concern. The good contact between the PMMA /ENR 50 electrolyte and the 

electrode is hoped to compensate the inhomogeneity of the blend. The homogeneity 

of the blend can be improved in the future work if the minimum conductivity of 10-5   

S/cm is obtained from the blend.   

 

Compositions that produced free standing films will be doped with various 

amounts of lithium salts namely lithium nitrate (LiNO3), lithium triflate (LiCF3SO3) 

and lithium imides (LiN (CF3SO2)2) to supply lithium ion for the ionic conduction. 

LiCF3SO3 salt is used because it has helped to improve the conductivity of rubber-

based electrolyte system (Idris et al., (2001), Glasse et al. (2002). LiN (CF3SO2)2 is a 

new lithium salt that has not been extensively used in polymer electrolyte systems 

(Sakaebe and Matsumoto, 2003, Deepa et al., 2004). It has several advantages such 

as excellent safety and stability characteristics as well as its ability to provide 

polymer electrolytes with ionic conductivity comparable to ClO4
- and much higher 

than CF3SO3
- can offer (Deepa, 2002; Webber, 1991).  LiNO3 salt is used for its 

hygroscopic characteristic that is suitable for electrolyte membrane in Fuel Cell. 

These salts are also chosen because they contain large anions that usually have low 
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lattice energy. The lattice energy of the salts plays an important role in the formation 

of polymer-salt complex. It gives a rough indication of the solubility of the salt 

which reflects the energy required to separate the positive and negative ions in a 

solid ionic compound. The lattice energies for LiNO3, LiCF3SO3 and LiN (CF3SO2)2 

salts are 848 kJ/mol (Lide, 1993), 735 kJ/mol (Kim et al., 2001) and 489.4 kJ/mol 

(Jenkins, 2006) respectively.  

 

Single plasticizers of ethylene carbonate (EC), propylene carbonate (PC), 

dimethyl carbonate (DMC) and mixed plasticizer of EC-PC, EC-DMC and PC-DMC 

will be added to PMMA / ENR electrolyte solutions to further improve the 

morphology and enhance the conductivity of the films . These plasticizers are among 

the most extensively studied in polymeric systems due to their low molecular weight, 

low viscosity, high dielectric constant and high boiling point properties. Furthermore, 

it has shown tremendous effect on improving the properties and also the conductivity 

of their respective systems (Jacob et al., 1998). 

 

 

 

 

1.11.2 Selection Of Material Characterizations 

 

When additives such as ENR 50, salts or plasticizers are added to the main 

polymer host of PMMA, the material will definitely show at least a slight change in 

its internal structure and properties. 

 

To study the effect of adding ENR 50, salts or plasticizers on the morphology 

of PMMA and the blend, Field Emission Scanning Electron Microscopy (FESEM) 

will be performed. To confirm polymer-polymer interactions or polymer-salt 

complexation or ion-ion interactions, Fourier Transform Infrared (FTIR) will be 

carried out. Differential scanning calorimetry (DSC) will be implemented to study 

the thermal properties of the new materials in which the glass transition temperature, 

Tg of the new materials will be determined.  
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Conductivity of a sample cannot be measured directly from specific 

equipment. Therefore, the impedance of each film prepared will be firstly measured 

by impedance spectroscopy at room and elevated temperature. From the impedance 

measurements, Cole-Cole plots will be obtained and the bulk resistance for each 

sample will be determined. Finally, the conductivity of the samples can then be 

calculated.  Besides impedance, the dielectric constant and the electrical modulus 

will also be calculated and analyzed in order to understand the effects of salts and 

plasticizer on the electrical conductivity of the materials.  Finally the impedance 

plots will be fitted to an equivalent circuit model by software fitting.   

 

Since the conductivity of a polymeric material is due to the ionic and 

electronic conduction, it is therefore important to determine the ionic transference 

number (ti) of the material. Films with appreciable conductivity value of at least 10-5 

S/cm will be selected for the determination of transport number. The determination 

of transference number (t) will be carried out manually.  

 

 

 

 

1.11.3 Selection Of Test Cell  

 

Once the samples have been characterized and showed complexation with 

high ionic transference number and sufficient conductivity (10-5 S/cm) at room 

temperature, it is then necessary to test the electrolytes in a complete battery system. 

In this study the battery system of the type LiNiCoO2 / polymer electrolyte / MCMB 

will be considered. Here industrial grade LiNiCoO2 and MCMB (mesocarbon 

microbeads) are the cathode and anode electrodes respectively. LiNiCoO2 is chosen 

because it is able to deliver a reasonably high voltage and high discharge capacity 

(Koksbang et al., 1996; Zhang et al., 2000; Zhechera et al., 1993; Caurant et al., 

1996).   However, these electrodes are readily prepared by other groups. The charge 

discharge characteristic will be carried out to determine the battery performance. 
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1.12 Expectations  

 

At the end of this work, it is hope that the right compositions of PMMA / 

ENR 50 blend can be obtained to form thin, freestanding films. It is also hope that 

the solvent casting technique is the right method in preparing PMMA / ENR 50 

based electrolytes films.  

 

It is expected that complexation occurred between the polymer and salt. For 

possible application purposes, a minimum conductivity of at least 10-5 S/cm 

(Gray,1991) can be obtained at room temperature when salts are doped into the 

polymeric films. The presence of plasticizers will improve the morphology of the 

electrolyte films and hence enhance the conductivity of the resulting films. 

 

High ionic transference number will be obtained from films that exhibited 

high ionic conductivity. The complete cells will give good charge-discharge 

characteristic and show stability towards lithium electrode when test on battery 

system. 

 

 

 

 

1.13 Technical Challenge and Limitations  

 

It is difficult to obtain a homogeneous phase in freestanding polymer 

electrolyte films. Therefore, it is difficult to qualitatively characterize the polymer 

via IR or FESEM techniques since it does not represent the whole systems.  

 

A freestanding type polymer based electrolyte for battery application has not 

yet been commercialized due to their poor electrode-electrolyte contact that impedes 

the ion exchange at the interface. Furthermore, the addition of plasticizers, though 

helps to increase the conductivity, has a poor electrochemical stability against cell 

electrodes and yet has to be established. 
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