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ABSTRACT 

 

 
 
  This thesis presents an exploratory study on modelling of oil palm (OP) yield 

using statistical and artificial neural network approach.  Even though Malaysia is one 

of the largest producers of palm oil, research on modelling of OP yield is still at its 

infancy.  This study began by exploring the commonly used statistical models for 

plant growth such as nonlinear growth model, multiple linear regression models and 

robust M regression model.  Data used were OP yield growth data, foliar 

composition data and fertiliser treatments data, collected from seven stations in the 

inland and coastal areas provided by Malaysian Palm Oil Board (MPOB).  Twelve 

nonlinear growth models were used.  Initial study shows that logistic growth model 

gave the best fit for modelling OP yield.  This study then explores the causality 

relationship between OP yield and foliar composition and the effect of nutrient 

balance ratio to OP yield.  In improving the model, this study explores the use of 

neural network.  The architecture of the neural network such as the combination 

activation functions, the learning rate, the number of hidden nodes, the momentum 

terms, the number of runs and outliers data on the neural network’s performance 

were also studied.  Comparative studies between various models were carried out. 

The response surface analysis was used to determine the optimum combination of 

fertiliser in order to maximise OP yield.   Saddle points occurred in the analysis and 

ridge analysis technique was used to overcome the saddle point problem with several 

alternative combinations fertiliser levels considered.   Finally, profit analysis was 

performed to select and identify the fertiliser combination that may generate 

maximum yield. 
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ABSTRAK 

 
 
Tesis ini mempersembahkan kajian penerokaan terhadap pemodelan hasil 

kelapa sawit melalui pendekatan statistik dan rangkaian neural buatan.  Malaysia 

adalah negara pengeluar minyak kelapa sawit terbesar, namun begitu penyelidikan 

mengenai pemodelan hasil kelapa sawit masih berada diperingkat awal. Kajian ini 

dimulakan dengan penerokaan terhadap model statistik yang popular untuk 

pertumbuhan pokok seperti model pertumbuhan taklinear, analisis regresi linear 

berganda dan analisis regresi-M teguh.  Data hasil kelapa sawit, data kandungan 

nutrien dalam daun dan data ujikaji pembajaan yang dikumpulkan daripada tujuh 

buah stesen di kawasan pedalaman dan tujuh buah stesen di kawasan tanah lanar 

pantai telah disediakan oleh Lembaga Minyak Sawit Malaysia (MPOB).  Dua belas 

model pertumbuhan taklinear telah dipertimbangkan.  Kajian awal menunjukkan 

model pertumbuhan taklinear logistik adalah yang terbaik untuk memodelkan 

pertumbuhan hasil kelapa sawit.  Kajian ini diteruskan dengan menerokai hubungan 

di antara hasil kelapa sawit dengan kandungan nutrien dalam daun dan nisbah 

keseimbangan nutrien.  Bagi mempertingkatkan keupayaan model, kajian ini 

menerokai penggunaan rangkaian neural. Kajian ini juga mengkaji kesan rekabentuk 

rangkaian neural seperti gabungan fungsi penggiat, kadar pembelajaran, bilangan nod 

tersembunyi, kadar momentum, bilangan larian dan data lampau terhadap prestasi 

rangkaian neural.  Kajian perbandingan di antara beberapa model yang dikaji telah 

dilakukan.  Analisis satah sambutan telah digunakan untuk menentukan nisbah baja 

yang paling optimum bagi menghasilkan hasil kelapa sawit yang maksimum.  

Masalah titik pelana berlaku di dalam analisis dan analisis permatang telah 

digunakan untuk mengatasi masalah tersebut dengan ia menyediakan beberapa 

pilihan kombinasi baja yang boleh dipertimbangkan.  Akhir sekali, analisis 

keuntungan dilakukan untuk memilih dan mengenalpasti kombinasi baja yang boleh 

menghasilkan keuntungan maksimum.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1  INTRODUCTION 

This chapter presents the introduction to this thesis.   It begins by describing 

the overall research background followed by a brief history of the oil palm industry 

in Malaysia.  Research objectives, the scope of this study, research framework and 

discussion on the research contribution are also given.   Finally, the brief of each 

chapter is outlined.  

 

 

 

1.2  RESEARCH BACKGROUND 

In the oil palm industry, modelling plays an important role in understanding 

various issues.  It is used in decision making and the advance in computer technology 

has created new opportunity for the study of modelling.  Modelling can be 

categorised into statistical and heuristic modelling.  Statistical modelling is defined 

as the analysis of the relationship between multiple measurements made on groups of 

subjects or objects, and the model usually contains systematic elements and random 

effects.  As a mathematical aspect, statistical modelling can be defined as a set of 

probability distributions on the sample space.  Modelling involves the appropriate 

application of statistical analysis techniques with certain assumptions on hypothesis 

testing, data interpretation, and applicable conclusion. 

 

Statistical analysis requires careful selection of analytical techniques, 

verification of assumptions and verification of the data.  In conducting statistical 
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analysis, it is normal to begin with the descriptive statistics, graphs, and relationship 

plots of the data to evaluate the legitimacy of the data, identify possible outliers and 

assumption violations, and form preliminary ideas on variable relationships for 

modelling.  

 

The heuristic approach is defined as pertaining to the use of general 

knowledge based on experimentation, evaluating possible answers or solutions, or 

trial-and-error methods relating to solving problems by experience rather than theory.  

Heuristic is also the problem-solving procedure that involves conceiving a 

hypothetical answer to a problem at the outset of an inquiry for purposes of giving 

guidance or direction to the inquiry.  One of the heuristic approaches is the neural 

network model, which is based on the rules of thumb and widely used in various 

fields.  A very important feature of neural networks is their adaptive nature where 

‘learning by example’ replaces ‘programming’ in solving problems.  This feature 

renders these computational models very appealing in application domains, where 

one has little or incomplete understanding of the problem to be solved, but where 

training data or examples are available.  

 

Neural networks are viable and very important computational models for a 

wide variety of problems.  These include pattern classification, function 

approximation, image processing, clustering, forecasting and prediction.  It is 

common practice to use the trial and error method to find a suitable neural networks 

architecture for a given problem.  A number of neural networks are successfully used 

and reported in literature (Zuhaimy and Azme, 2001;  Zuhaimy and Azme,  2002).  

Neural network also has been applied in various fields such as in environmental 

(Corne et al.,  1998; Hsieh and Tang, 1998;  Navone and Ceccatto, 1994),  in 

economy and management (Boussabaine and Kaka, 1998;  Franses and Homelen, 

1998;  Garcia and Gency, 2000;  Indro et al., 1999;  Klein and Rossin, 1999b; Tkacz 

and Hu, 1999;  Yao et al., 2000) and in agronomy (Shearer et al., 1994;  Drummond 

et  al., 1995; Liu et al., 2001;  Kominakis et al., 2002;  Shrestha and Steward, 2002).   

 

There are different types of the network are perceptron network, multiple 

layer perceptron, radial basis function network, Kohonen network, Hopfield network 

etc. However, the multiple layer perceptron is widely reported and used neural 
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networks in application.  The most popular architecture, in the class of multiple layer 

perceptron, is the feedforward neural network. 

 

 

The developments of models for agriculture are normally divided into three 

steps.  The first step is to develop a preliminary model, which is inadequate. This 

preliminary model does not have to be a good model but it acts as a basis.  This leads 

to further research, to develop a comprehensive model incorporating all the processes 

that appear to be important.  Such a model is valuable for research, but far too 

complex for everyday use.  To overcome this, a set of summary models is produced, 

each containing enough detail to answer limited questions.  For example, there might 

be a summary model to predict the response to fertilisers on different soil types.  

Another model might be used to predict cyclic variation in yield.  Modelling helps to 

make predictions more accurate.  There is no doubt that modelling will maintain its 

importance in oil palm research as the problems set more complex and difficult.  This 

study proposes the development of statistical model and neural network in modelling 

oil palm yield. 

 

 

 

1.3  BRIEF HISTORY OF OIL PALM INDUSTRY IN MALAYSIA 
 

Oil palm (Eleais guineensis. Jacq.), is a plant of African origin and is grown 

commercially in Africa.  In the early 19th century the oil palm was brought into this 

country by the British.  The oil palm was first planted in 1848 in Bogor-Indonesia 

and in Malaysia in 1870, at the same time rubber seeds were brought in (Hartley, 

1977).  Due to lower profitability of oil palm in comparison to rubber, the 

development of oil palm industry was rather slower.  The first commercial planting 

of oil palm in Malaysia took place in 1917, six years after its systematic cultivation 

in Sumatera.  The early planting was undertaken by European plantations, including 

Tannamaran Estate in Selangor and Oil Palm Malaya Limited.  The 1960s and 1970s 

were marked by extensive development of oil palm undertaken largely by private 
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plantations and the Federal Land Development Authority (FELDA).  In addition, a 

number of State Agriculture Development Corporations (SADC) became involved in 

oil palm cultivation after learning about its good prospects.  The Rubber Industry 

Smallholders’ Development Authority (RISDA) and the Federal Land Consolidation 

and Rehabilitation Authority (FELCRA) were also involved in cultivating abandoned 

and idle rubber and paddy areas with oil palm (Teoh, 2000).  

 

From year 1975 to year 2000, the worldwide area planted with oil palm 

(Elaeis guineensis Jacq.) has increased by more than 150 percent.  Most of this 

increase has taken place in Southeast Asia, with a spectacular production increase in 

Malaysia and Indonesia.   The production of crude palm oil (CPO) in 2003 increased 

markedly, by 12.1 percent or 1.4 million tonnes to 13.35 million tonnes from 11.91 

million tonnes in 2002 (Figure 1.1) (Teoh, 2000). 
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Figure 1.1: Oil palm planted area: 1975 – 2003 (hectares) including Peninsular 

Malaysia, Sabah and Sarawak 

(Source: Department of Statistics, Malaysia: 1975-1989; MPOB: 1990-2003) 
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The production of crude palm kernel also rose substantially by 11.6 percent in 

to 1.6 million tonnes year 2003 from 1.47 million tonnes in year 2002.  The increase 

was mainly attributed to the expansion in the matured area (Figure 1.2), favourable 

weather conditions and rainfall distribution as well as constant sunshine throughout 

the year.  Exports of palm oil increased by 12.5 percent or 1.36 million tonnes to 

12.25 million tonnes from 10.89 million tonnes in 2002 (Figure 1.3) (MPOB, 2003).  
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Figure 1.2: Annual production of crude palm oil (1975-2003) including Peninsular 

Malaysia, Sabah and Sarawak. (Source: Department of Statistics, Malaysia: 1975-

1989; MPOB: 1990-2003) 
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Figure 1.3: Annual export of palm oil: 1975 – 2003 in tonnes. (Source: MPOB) 
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Malaysia is the major producer and exporter of palm oil in the world (Teoh, 

2000).  Figure 1.4 shows Malaysian production of palm oil compared to Indonesia 

and other countries from 1999 to 2003.   It shows that Malaysia and Indonesia 

recorded an increase in production every year.  While Figure 1.5 presents the world’s 

major palm oil exporters of palm oil from year 1999 to 2003, it also indicates that 

Malaysia and Indonesia also recorded the higher volume.  In 2003, the Malaysian 

palm oil exporting industry has increased by around 12.5 percent to 12,248 million 

tonnes, from 10,886 million tones the previous year.  Indonesia only recorded a 7.07 

percent increase over the same period.  The development of the oil palm industry is 

growing at a fast rate and requires a lot of research.  This study took the challenge to 

contribute our knowledge to the development of the oil palm industry. 
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Figure 1.4: World major producers of palm oil (‘000 tonnes) 

Source: Oil World (December 12, 2003), Oil World Annual (1999-2003) 
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Figure 1.5: World major exporter of palm oil, including re-exporting country (*) 

 

ing 

d 

r of planting.  The yield will then increase at a low increment until the 

enty-fifth year.  From our exploratory study on modelling practices, little work has 

been re

t 

ar 

Source: Oil World (December 12, 2003), Oil World Annual (1999-2003) 

 

1.4  PROBLEM DESCRIPTIONS 
 

The problem in modelling oil palm yield growth is that it does not follow a

linear model.  It normally follows a nonlinear growth curve.  In modelling a 

nonlinear curve, the complexity of the problem increases with the increase in the 

number of independent variables.   The function of a growth curve has a sigmoid 

form, ideally its origin is at (0,0), a point of inflection occurring early in the 

adolescent stage and either approaching a maximum value, an asymptote or peak

and falling in the senescent stage (Philip, 1994). Normally, oil palm can be harveste

after three years of planting.  The oil palm yield will increase vigorously until the 

tenth yea

tw

ported on modelling the oil palm yield growth (Corley and Gray, 1976).  

 

In most cases, researchers focused their study on the effect of environmental 

factors, such as evapotranspiration, moisture and rainfall to the oil palm growth.  

Chan et  al. (2003) conducted a study on the effect of climate change to fresh frui

bunches (FFB) yield, and found that climate change has significantly affected oil 

palm yield. The most popular method used in the oil palm industry is multiple line
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regression. This model is used to investigate the causal effect of the independent 

variables to the dependent variable.  The literature shows that the foliar nutr

composition can be used as an indicator to estimate the oil palm yield.  Nevertheless 

the foliar nutrient composition is also dependent on several factors, such as climate, 

soil nutrients, fertilisers, pest and diseases, but little had been done on modelling 

these factors.  This study explores the possibility of improving the model but in 

particular, in improving the level of accuracy it can produce. The proposed model 

should give smaller error values than previous model (Multiple Linear Regression, 

MLR).  

ient 

actors 

e 

a 

lationship between the response variable (oil palm yield) and the four fertiliser 

us (P), potassium (K) and magnesium 

(Mg).  The expected yield can be described as a continuous function of the 

applica

r 

sers 

f 

ried 

may still be estimated. 

 

  

whether the solution gives a maximum, minimum or saddle point of the 

sponse curve.   From our exploratory study on the use of response surface analysis, 

ther le.  This study will propose to use 

g

 

The response surface analysis is the technique used to model the relationship 

between the response variable (Fresh Fruit Bunch yield, FFB) and treatment f

(fertilisers).  The factor variables are sometimes called independent variables and ar

subject to the control by the experimenter.  In particular, response surface analysis 

also emphasises on finding a particular treatment combination, which causes the 

maximum or minimum response. For example, in the oil palm industry there is 

re

treatments, namely nitrogen (N), phosphor

tion level of fertiliser used.  A continuous second-degree-function (N2, P2, K2 

or Mg2) is often a sufficient description of the expected yield over the range of facto

levels applied (Verdooren, 2003).  If the fertiliser application rates are greater or 

smaller than the optimum application rate it may result in reduced yields. Fertili

are wasted if the amount applied is more than the optimum rate.  The advantage o

this technique is that the effects of treatment combinations that have not been car

out in the experiment 

The use of response surface analysis is necessary to obtain the optimum level 

of fertiliser requirements.  In response surface analysis, the eigenvalues will 

determine 

re

e is no solution if the stationary point is a sadd

rid e analysis as an alternative solution to overcome the saddle point problem. 
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1.5 RESEARCH OBJECTIVES  

Even though Malaysia is the largest producer of palm oil in the world, studies 

a recent phenomenon for decades.  Literature reviews on research 

onducted in this field are confined to simple models.  The oil palm industry is 

urrently under going a structural change and is becoming more complex due to 

chnological advances, agricultural management, product demand and planting 

 

l 

 

We further refine the objectives as follows:- 

 To study current modelling and estimating practices in the oil palm industry. 

 To explore and propose the best model for oil palm yield growth. 

 of neural network to model oil palm yield. 

 To optimise fertiliser level which will generate optimum yield. 

 

d 

.6 SCOPE OF THE STUDY 

 

s 

 

on modelling yields have been very limited.  The modelling of Malaysian oil palm 

yield has been 

c

c

te

areas (Teoh, 2000).   

This research is an attempt to present a proper methodology for modelling oi

palm yield.  The model may then be used for estimating and managing the oil palm

industry.  

 

•

•

• To explore the use

•

These objectives will be achieved by following the research framework as presente

in Figure 1.6. 

 

 

 

1

This section is divided into three subsections.  The first section will discus

the scope of the data, followed by a discussion on the model scope, and finally the 

discussion on statistical testing deployed in this study.  
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1.6.1 Data Scope 

 

For modelling oil palm yield growth data used in this study is secondary data 

taken from research done by Foong (1991; 1999).  The research was conducted at 

Serting Hilir in Negeri Sembilan with relatively wet weather.  The annual rainfall in 

this area is between 1600 mm to 1800 mm with two distinct droughts in January to 

March and June to August.  The data used here is the average fresh fruit bunches 

(tonnes/hectare) from 1979 to year 1997.  

 

The Malaysian Palm Oil Board (MPOB) provided us with a data set taken 

from several estates in Malaysia.  The factors included in the data set were foliar 

composition, fertiliser treatments and FFB yield.  The variables in foliar composition 

include percentage of nitrogen concentration N, percentage of phosphorus 

concentration P, percentage of potassium concentration K, percentage of calcium 

concentration Ca, and percentage of magnesium concentration Mg.  The fertiliser 

treatments included N, P, K and Mg fertilisers, and they were measured in kg per 

palm per year, example 3.7 kg N fertilisers were needed for one palm per year.  The 

foliar composition data was presented in the form of measured values while the 

fertiliser data in ordinal levels, from zero to three. 
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Research Design Review 
 
 
 
 

           Secondary                   DATA GATHERING                                 MPOB 
                  Data 
 
 
 

DATA MINING 
 
 
 

DATA ANALYSIS 
 
 
 

MODELLING 
 
 
 

           Oil Palm Yield                   Foliar Composition             Fertiliser Data       
           Growth Data 

 
 
           Nonlinear Growth                                                            Response Surface 
           Curve                                                                               Analysis 
                                                         MLR             
                                                         RMR              
                                                         Neural Network  
 
 

Goodness of Fit 
Testing 

     No 
           Yes 

 
Comparative Study 

                             No 
         Yes 
 

Oil Palm Yield Model 
 

Figure 1.6: Summary of research framework and research methodology used in this 

study 

 

  



 40

1.6.2 Model Scope 

 

This study will confine the scope of models, namely the nonlinear growth 

model (NLGM), multiple linear regression (MLR), robust M-regression (RMR), 

response surface analysis (RSA) and neural network (NN) models.  The nonlinear 

growth model will be used to model the data of oil palm yield growth.  Using foliar 

analysis data we employ the multiple linear regression and robust M-regression to 

estimate the oil palm yield.  In the MLR model the independent variables are N, P, 

K, Ca and Mg concentration (or as we call it, major nutrient component, MNC) and 

the dependent variable is fresh fruit bunches (FFB) yield.  Aside from MNC 

concentration, we also introduce the use of nutrient balance ratio (NBR), critical leaf 

phosphorus concentration (CLP), total leaf basis (TLB), deficiency of K (defK) and 

deficiency of Mg as independent variables in the second part in MLR.  In MM 

regression we only consider N, P, K, Ca and Mg concentration as independent 

variables and FFB yield as the dependent variable. 

 

We propose the use of the neural network to model oil palm yield.  The 

discussion on the selection of neural network architecture and some statistical 

analysis will be given in Chapter 6.  Chapter 7 will describe the use of response 

surface analysis to obtain the optimum fertiliser rate to produce an optimum FFB 

yield.  Following this is a simple economic analysis to select the best combination of 

fertilisers input that generates the maximum profit. 

 

1.6.3 Statistical Testing Scope 

 

In this study we considered several statistical tests.  They are the error model, 

sum of squares error (SSE), root mean squares error (RMSE), determination 

coefficient (R2), coefficient of correlation (r), t-test, F test and chi-square test.  The 

discrepancy between the predicted value from the model fitted, i and actual value yŷ i 

is used to measure the model goodness of fit. The difference between the actual and 

the estimated value as known as the model error, and can be written as follows; 

 ei = yi -  i = 1, 2,…, n iŷ
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where ei is the model error in observation i. yi is the actual observation i, and i  is 

the estimated value at i observation.  If the model performance is ‘good’, the model 

error will be relatively sm

ŷ

all. 

)

(ii) Mean Squares Error, MSE = 

 

 

For the purposes of measuring the accuracy of model fitting, we consider the 

four measurements commonly used in any research on model fitting.  Namely sum 

squares error, root mean squares error, determination coefficient R2 and correlation 

coefficient.  All formulas are given below; 

(i) Sum Squares Error, SSE = , i = 1, 2,…, n (∑
=

−
n
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1i(iii)  Root Mean Squares Error, RMSE =  
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(iv)  Determination of coefficient, R2 = 1- 
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(v) Coefficient of correlation, r = ∑
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, i = 1, 2,…, n 

 

where y  observed value, ŷ  predicted value, n number of observation, x and y are 

the me  

xplain 

ation coefficient is used to identify the strength of the 

relationship between any two variables. 

In the case of more then two samples, one-way analysis of variance (anova) 

can be used to test the different between the groups using F-test.  The anova F-test is 

an of xi observation and yi observation, respectively, var(x) is the variance of X

and var(y) is the variance of Y.  SSE, MSE and RMSE are used to measure the model 

accuracy. The R2 value is a measure of how well the explanatory variables e

the response variable.  Correl
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calculated by dividing an estimate of the variability between the groups by the 

variability within the groups; 

  F = 
upsithion groVariance w
upsetween groVariance b   

A high value of F, therefore, is evidence against the null hypothesis of equality of all

population means.  If the test shows the mean difference be

 

tween groups to be 

tatistically significant, the Multiple Duncan test can be used to examine which 

groups e-

h 

The model performance will be measured using sum squares error, mean 

quares error, mean absolute, root mean squares error, mean absolute percentage 

d coefficient of correlation. 

 

 

n 

nts 

s 

te 

in 

 and differs for each experiment.   We study 

urteen experimental stations (including Peninsular Malaysia and East Malaysia), 

seven s

s

 are different to each other (Montgomery, 1991).   Another alternative to on

way analysis of variance is the Chi-square test, which is a nonparametric test whic

can be used when assumption of normality is not needed.  

 

s

error, coefficient of determination an

 

1.7  DATA GATHERING 

 

The Malaysian Palm Oil Board (MPOB) provided data from the MPOB 

database of oil palm fertiliser treatments, which have been carried out from fourtee

oil palm estates.  All the data from each estate has been collected, recorded and 

compiled by MPOB researchers in the Research Database Center.   All treatme

were based on a factorial design with at least three levels of N, P and K fertiliser 

rates.   Although different types of fertiliser were used in the treatments, the rate

quoted in the final analysis will be equalized to the amounts of ammonium sulpha

(AS), muriate of potash (KCI), Christmas Island Rock Phosphate (CIRP) and 

kieserite (Kies).  Cumulative yields obtained over a period of two to five years 

each trial were analyzed.  The data of this study is experimental basic and was 

collected for a certain period of time

fo

tations in inland areas and seven stations in coastal areas.  Appendix A 

presents the background of the experimental stations including age of oil palm, soil 

type and the location of the station. 
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Fresh fruit bunches (FFB) yield data used in this study was measured in

tonnes per hectare per year or the average of FFB yield in one year.  Foliar analysis 

was only done once a year and the samples are taken either on March or July every 

year.  For example, if this year foliar analysis conducted in July, the next

 

 sample also 

conducted in July next year, and so on.  The type of FFB yield data and foliar 

nalysis data is continuous, and a fertiliser input is in coded form (0, 1, 2, and 3).  If 

code data is needed, the coded value will be recoded to the exact value (Appendix 

 analysis procedure is presented in section 1.8. 

 

 

 and 

s 

) deficiency may be the result of a lack of Mg in the soil or due to 

ect with excessive K levels or both of these conditions.  It also shows 

hidden

 

 

f sampling the appropriate frond is correctly sampled for each leaf 

sampling unit (LSU).  Frond 17 is sampled from the labeled reference LSU palm in 

some o ll 

a

re

B).  The detail of the leaf

 

1.8 LEAF ANALYSIS 
 

The best method of determining the kind and amount of fertiliser to apply to

fruit trees is by leaf analyses.  It effectively measures macro and micronutrients

indicates the need for changes in fertiliser programs (Cline, 1997).  Leaf analyse

integrate all the factors that might influence nutrient availability and uptake.  The 

essentials of macronutrients to oil palm tree were listed in Appendix C.   However, 

leaf analysis indicates the nutritional status of the crop at the time of sampling 

(Pushparajah, 1994).  It also shows the balance between nutrients for example, 

magnesium (Mg

antagonistic eff

 or incipient deficiencies.  Adding N, for example, when K is low may result 

in a K deficiency because the increased growth requires more K (Fairhurst and 

Mutert, 1999). 

  

The leaf analysis was conducted to determine the nutritional status of leaflets

from frond 9 on immature palms and frond 17 on mature palms (Corley, 1976).  This

is conducted to assist the preparation of annual fertiliser programmes.  In each 

nominated lea

r all fields in a LSU and prepared for analysis.  Cleanliness is essential at a
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stages to prevent sample contamination and sampling time between 6.30 am and 

12.00 noon.  

 

A frond 17 is identified by counting from the first fully open frond in the 

center of the crown (frond 1) (and moved three steps downward (frond 1, 9, 17) with

the same stack) and removed with a sickle.  The frond is cut into approximately thre

equal sections (to get the average of the nutrient concentration).  The top and ba

sections are discarded and placed in the frond stack.  Twelve leaflets are selected an

 

e 

se 

d 

moved from each frond. Six leaflets are cut from each site at the mid-point of the 

frond s

e 20-30 cm 

id-section; it is not necessary to wash the leaves.  The mid-rib of each leaflet’s 

section re 

e 

 

leaflets are placed in a labeled plastic bag.  Half of the 

ample retained as a backup for future reference (stored in a cool, dry place) while 

the oth ry are 

s. 

re

ection (Corley, 1976).  Ensure that the 12 leaflets comprise of three from the 

upper rank and three from the lower rank from each side of the rachis.  The leaflets 

samples from each field (or smaller area if required) are put together in a large 

labeled plastic bag. About 500 leaflets are collected from each field of 30 hectare. 

 

The samples are then sent to the estate laboratory or sample preparation room 

for further preparation.  The leaflets are bundled and trimmed to retain th

m

 is removed and discarded.  The remaining parts of the leaflet’s (lamina) a

then cut into small pieces 2 cm long and placed on aluminium trays to be dried.  Th

leaflets are dried in a fan-assisted oven for 48 hours (650C) or 24 hours (1050C).  The

leaf N concentration will be reduced if the temperature exceeds 1050C.  

 

After drying, the 

s

er is submitted for analysis.  The LSU sample results from the laborato

then formatted as a spreadsheet and the variability is calculated.  Leaf samples are 

analyzed for N, P, K, Ca and Mg. Other nutrients may be included for palms planted 

on particular soil types. 

 

Leaf sampling is carried out once each year.  Sampling is frequently 

conducted to examine specific areas or to investigate particular nutritional problem

Leaf sampling should be done at the same time each year and not during wet or very 

dry periods.  Complete the sampling procedure in the shortest possible time. 
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Because of the synergism between nitrogen (N) and phosphorus (P) uptake, 

leaf c

chs, 1981).  This is due to the constant ratio between N and P in protein compounds 

found i

39 

oncentration must be assessed in ratio to leaf N concentration (Ollagnier and 

O

n plant tissue (Fairhurst and Mutert, 1999).  A critical curve has been 

developed where CLCp is defined as; 

 

Critical Leaf P concentration, CLCP = 0.0487 x Leaf N concentration + 0.0

 

A different approach to determine whether potassium (K) and magnesium 

(Mg) are deficient taking into account the relative concentrations of the leaf cations 

,  

00 

K  Mg and calcium (Ca).  First, the total amount of bases in leaf (TLB) is calculated

and K and Mg are assessed as a percentage of TLB (Foster 1999).  TLB can be 

derived from equation below; 

 

TLB (cmol/kg) = (% leaf K/39.1 + % leaf Mg/12.14 + % leaf Ca/20.04) x 10
 

roughly, K and Mg deficiency can then be assessed individually, based on their 

percentage of TLB.  The deficiency of K and Mg can then be obtained 

as 100x⎟
⎠
⎞

⎜
⎝
⎛

TLB
X , where X is partial to TLB of K and Mg.  The K and Mg deficiency 

can be rated into three categories;  If the value is below than 25 the rating is 

deficient, a low rating is between 25 to 30 d a rating more than 30 is considered 

sufficient.   Nutrient Balance Ratio, NBR is defined as the ratio between the foliar 

nutrient composition and another foliar nutrient composition.  For example, the NBR 

between N and K in foliar, is defined as the ratio between N and K concentration. 

The range of the NBR values for oil palm presented in Table 1.1.  

 

 

 

 

an
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Table 1.1: The op  value of nutrient balance ratio (NBR) for foliar analysis 

 

nt ratio 

timum

Nutrie NBR 

N/K 2.50 – 3.00 

N/Mg 

N/P 

N/C 

K/Ca 

14.00– 18.00 

11.00 – 17.00 

4.00 – 9.00 

4.00 – 10.00 

2.00 – 5.00 

K/Mg 

Mg/Ca 0.25 – 0.55 

 

 

 

1.9  RESEARCH IMPORTANCE 

 

The nonlinear growth models are used in modelling the nonlinear 

henomenon.  Since the nonlinear growth model has not yet been explored in oil 

palm in  

l 

ss 

the 

r the additional relevance of the independent 

ariable to the model.  In these sense, multiple linear regression is rather flexible. 

Our stu

rly all 

p

dustry (Foong, 1999 and Ahmad Tarmizi et al., 2004), we proposed the use

of the nonlinear growth model in the oil palm yield growth study.  Here we wil

provide some mathematical basis in parameter estimation for modelling oil palm 

yield growth.  Then from the results and analysis we can study the biological proce

of oil palm yield growth. 

 

Multiple linear regression can be used to find the relationship between 

dependent variable and the independent variable.  There can be more than one 

independent variable, which allows fo

v

dy emphasizes the proposed new independent variables into the model, an 

area yet to be explored by researchers.  In real life, nothing seems to work linea

the time.  Data are sometime inclusive of outlier or unusual observation.  We 

proposed the use of multiple robust regression to overcome the negative impact of 

outlier to the model’s development.  
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To improve the models, there are various new heuristic methods suggested in

this literature.  We explore the flexibility of the neural networ

 

k to improve the 

timated performance and the model’s accuracy.   Previous studies in oil palm 

topped when the stationary point was saddle (Ahmad Tarmizi, 1986).  This caused 

id not make allowances for the possibility an incomplete inference from the model 

aused difficulties in implementing 

improvements in practice outcomes.   This study proposes the use of ridge analysis 

whe

0

is study.  Since it is an area of high 

 

cate

• 

• ural networks model to predict the oil palm yield and NN 

• 

The findings indicated that the combination activation and number 

 

 This study investigates the effects of outliers on NN performance.  The findings 

 

 The response surface analysis when combined with the ridge analysis was used 

to obtain the optimum level of foliar nutrient composition and fertiliser input to 

produce optimum oil palm yield. 

es

s

d

than produce inefficient decision.  It also c

n the stationary point is saddle to improve data analysis. 

  

 

 

1.1     RESEARCH CONTRIBUTION 

 

There are many contributions in th

importance for the sustainability of the oil palm industry, the contributions can be

gorized as follows; 

• Identifying several nonlinear growth models for oil palm yield growth. 

The investigation on the relationship between foliar nutrient composition and 

yield was conducted using MLR and RMR.  A practical model and procedure 

were developed for this purpose.  

Development of ne

results more reliable compared with the MLR and RMR models. 

This study proposes statistical testing to evaluate the factors that influence NN 

performance.  

of hidden nodes have a significant effect on the NN performance.  However, the

learning rate, momentum term and number of runs do not give any effect on the 

NN performance. 

•

show that percentage-outliers and magnitude-outliers significantly affect the NN

performance. 

•
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Several of the contribution demonstrated above has been published in various form 

as desc

1.11  HESIS ORGANISATION  

f description on the 

usage of the data in this research. 

 

 in several fields, such as economic, management and 

gronomy.  A summary is included at the end of the chapter. 

e neural networks model.  This chapter also proposes 

e research framework 

 

 yield 

e partial 

and 

Chapter 5 discusses the development of multiple linear regression and robust 

M-regression to investigate the relationship between fresh fruit bunch and the 

nutrien

re 

ribed in Appendix D 

 

 

 

T

 

This thesis contains eight chapters.  Chapter 1 is the introduction. This 

chapter gives an introduction to the problem’s description, research objectives, 

research scopes, research importance, research data and a brie

 

Chapter 2 is the Literature Review. This chapter contains a discussion on the

current and past research on oil palm yield.  Here we present the application of 

neural network modelling

a

 

 Four main models used in the thesis are explained in Chapter 3.  It discusses 

the statistical methods such as nonlinear growth models, multiple linear regression, 

response surface analysis and th

th

In Chapter 4 the use of the nonlinear growth curve to model the oil palm

growth is considered.  Twelve nonlinear growth models are presented and th

derivative for each models are provided.   Comparisons among the model is done 

given at the end of the chapter. 

  

t foliar composition.  The use of nutrient balance ratio, deficiency of 

magnesium, deficiency of potassium and critical leaf phosphorus as independent 

variables are proposed in this chapter.  The numerical results from both methods a

presented and compared in terms of modelling performance. 
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Chapter 6 presents the development of neural network to oil palm yield 

modell

al 

ss of fit and model accuracy. 

umerical results of the foliar nutrient composition and fertiliser treatments 

perform

 simple economics analysis to generate the optimum 

rtilisers level in order to maximise the profit. 

 

Chapter 8 concludes the relevant and important findings from this research.  

ecommendations on areas related to the findings and possible directions for future 

search are presented.  

 
 
 
 
 
 
 
 

ing.  The experimental design is conducted to investigate the effect of the 

number of hidden nodes, the number of runs, momentum terms learning rate and 

outliers data to the NN performance.  The results and conclusion of model selection 

have been carried out.  The results from multiple regression analysis and neur

network model are compared in terms of goodne

  

N

ed by response surface analysis are reported in Chapter 7.   The use of ridge 

analysis is discusses to overcome the ‘saddle point’ problem at the stationary point.  

This chapter ends with a

fe

 

R

re
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