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ABSTRACT

Deoxyribonucleic Acid (DNA) has certain unique properties such as self­

assembly and self-complementary in hybridization, which are important in many 

DNA-based technologies. DNA computing, for example, uses these properties to 

realize a computation, in vitro, which consists of several chemical reactions. Other 

DNA-based technologies such as DNA-based nanotechnology and polymerase chain 

reaction (PCR) also depend on hybridization to assemble nanostructure and to 

amplify DNA template, respectively. Hybridization of DNA can be controlled by 

designing DNA sequences properly. In this thesis, sequences are designed such that 

each sequence uniquely hybridizes to its complementary sequence, but not to any 

other sequences. This objective can be formulated using four objective functions, 

namely, similarity, Hmeasure, continuity, and hairpin. To achieve this, particle swarm 

optimization (PSO) for DNA sequence design is proposed to minimize the objective 

functions subjected to two constraints: melting temperature and GCcontent. Two 

models are developed, namely the Continuous PSO and Binary PSO. Since DNA 

sequence design is a multi-objective optimization (MOO) problem, two methods to 

solve MOO are used in this thesis. These methods are the aggregation-based method 

and criterion-based method, particularly vector evaluated PSO (VEPSO). The 

implementation of PSO algorithm for DNA sequence design is first started with 

application of both proposed models to aggregation-based method. Then, the results 

between these models are compared. It is found that better results are produced by 

Binary PSO. Next, VEPSO is used to design DNA sequences based on Binary PSO. 

The results show that several set of good sequences are produced, which are better 

than other research works where only a set of DNA sequences is generated.



ABSTRAK

Asid Deoksiribonukleik (DNA) mempunyai ciri-ciri unik tertentu seperti 

pasang kendiri dan pelengkap kendiri dalam penghibridan, yang penting dalam 

banyak teknologi berasaskan DNA. Pengkomputeran DNA, contohnya, 

menggunakan ciri-ciri ini untuk melaksanakan sesebuah pengkomputeran, in vitro, 

yang melibatkan beberapa tindakbalas kimia. Lain-lain teknologi berasaskan DNA 

seperti nanoteknologi berasaskan DNA dan polymerase tindak balas rantai (PCR) 

juga masing-masing bergantung kepada penghibridan untuk menggabungkan struktur 

nano dan menjana templat DNA. Penghibridan DNA boleh dikawal dengan 

merekabentuk urutan DNA dengan betul. Dalam tesis ini, urutan-urutan direkabentuk 

supaya setiap urutan dihibridkan secara unik kepada urutan pelengkapnya sahaja, 

tetapi bukan kepada urutan-urutan yang lain. Objektif ini boleh dirumuskan dengan 

menggunakan empat fungsi objektif, iaitu similarity, Hmeasure, continuity, dan hairpin. 

Untuk mencapai objektif tersebut, pengoptimuman kerumunan zarah (PSO) untuk 

merekabentuk urutan DNA dicadangkan bagi meminimumkan fungsi-fungsi objektif 

tersebut, tertakluk kepada dua kekangan: suhu cair dan GCcontent. Dua model 

dibangunkan, iaitu PSO Berterusan dan PSO Perduaan. Oleh kerana masalah 

rekabentuk urutan DNA merupakan masalah pengoptimuman pelbagai objektif 

(MOO), dua kaedah penyelesaian MOO digunakan dalam tesis ini. Kaedah-kaedah 

ini adalah kaedah berasaskan penambahan dan kaedah berasaskan kriteria, iaitu 

penilaian vektor PSO (VEPSO). Pelaksanaan algoritma PSO untuk rekabentuk urutan 

DNA dimulakan dengan aplikasi kedua-dua model yang dicadangkan kepada kaedah 

berasaskan penambahan. Kemudian, keputusan antara model-model ini 

dibandingkan. Ternyata keputusan yang lebih baik dihasilkan oleh PSO Perduaan. 

Kemudian, VEPSO digunakan untuk merekabentuk urutan DNA berdasarkan PSO 

Perduaan. Keputusan menunjukkan bahawa beberapa set urutan-urutan yang bagus 

dihasilkan, yang mana lebih baik daripada kerja-kerja penyelidikan yang lain di 

mana hanya satu set urutan-urutan DNA dihasilkan.
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INTRODUCTION

1.1 Particle Swarm  Optim ization in Brief

Swarm intelligence is a discipline that deals with natural and artificial 

systems composed of many individuals that coordinate using decentralized control 

and self-organization (Bonabeau, Dorigo and Theraulaz, 1999). In particular, this 

discipline focuses on the collective behaviours that result from the local interactions 

of the individuals with each other and also with their environment. Examples of 

systems studied by swarm intelligence are colonies of ants and termites, schools of 

fish, flocks of birds, and herds of land animals. Some human artifacts also fall into 

the domain of swarm intelligence, notably some multi-robot systems, and also certain 

computer programs that are written to tackle optimization and data analysis 

problems.

Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995) is a 

population based stochastic optimization technique for the solution of continuous 

optimization problems. It is inspired by social behaviours in flocks of birds and 

schools of fish. In PSO, a set of agents called particles will search for good solutions 

to a given continuous optimization problem. PSO has been applied in many different 

problems and has successfully solved this problem better than other algorithms.



1.2 Deoxyribonucleic Acid

Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic 

instructions used in the development and functioning of all known living organisms 

and some viruses. The main role of DNA molecules in living organism is the long­

term storage of information.

Chemically, DNA is a polymer, which is linked together from a series of 

monomers. Monomers, which form the structure of nucleic acids, are called 

nucleotides. Each nucleotide contains a sugar (deoxyribose), a phosphate group, and 

one of four bases: Adenine (A), Thymine (T), Guanine (G), or Cytosine (C). These 

bases are grouped into two. Adenine and Guanine are called purine bases because 

their structure consists of two rings of atoms. On the other hand, cytosine and 

Thymine are known as pyrimidine bases, since they have a single ring of atoms. 

Each base has a slightly different composition, or combination of oxygen, carbon, 

nitrogen, and hydrogen.

A single-stranded DNA consists of a series of nucleotides, which has a sense 

of direction, in which one end is chemically different than the other. The 5’ end 

terminates in a 5’ phosphate group (-PO4); the 3’ end terminates in a 3’ hydroxyl 

group (-OH), as shown in Figure 1.1. This is important because DNA strands are 

always synthesized in the 5’ to 3’ direction. Thus, single-stranded DNA is normally 

written according to the sequence of nucleobases, from 5’ to 3’. As such, a single 

stranded DNA, 5’-ATCG-3’ is normally written as ATCG.

The two single-stranded DNA are held together by hydrogen bonds between 

pairs of bases, which are called duplex or double-stranded DNA based on Watson- 

Crick complement. Each type of base on one strand forms a bond with just one type 

of base on the other strand. The nucleotides only form stable bonds in certain 

combinations: A pairs with T, and G pairs with C, as shown in Figure 1.2 (Seiffert 

and Huhle, 2008). Thus, A-T and G-C base pairs are said to be complementary. As 

shown in Figure 1.2, purines form hydrogen bonds to pyrimidines, with A bonding 

only to T, and C bonding only to G. This arrangement of two nucleotides binding 

together across the double helix is called a base pair.



Figure 1.1: Chemical structure of each base and phosphate in single-stranded DNA

Figure 1.2: A double-stranded DNA structure.



Hybridization is a technique or process that has been found by biochemist 

Roy Britten in the 1960s as a way to analyse the composition of genome. By 

understanding hybridization, the process which single DNA strands combine to form 

a double helix is fundamental to biology and central to DNA-based technologies 

such as DNA computing, DNA biotechnology, and DNA nanotechnology.

Denaturation is a process where double-stranded DNA strands uncoils and 

separate into single-stranded DNAs, while hybridization occurs when 

complementary DNA strands bind, or hybridize based on Watson-Crick base pairing. 

In denaturation, double-stranded DNAs can be separated by heating up the solution 

to about 85-95°C, while hybridization can be done by cooling down the test tube 

reaction solution (Ausubel and Struhl, 1995). There are three types of hybridization, 

namely bi-molecular hybridization, multi-molecular hybridization, and uni-molecular 

hybridization. Bi-molecular hybridization occurs when two kinds of single-stranded 

DNAs form a double helix structure of DNA as shown in Figure 1.3. Meanwhile, 

three or more strands are involved in the multi-molecular hybridization, which is the 

essence of Adleman DNA computing (Adleman, 1994). Uni-molecular hybridization 

or self-hybridization could develop a hairpin formation as shown in Figure 1.4. This 

would happen if a complementary subsequence exists in the same single-stranded 

DNA.

DNA hybridization is very sensitive to DNA sequence or composition. 

Knowledge of how the process occurs could enable researchers to more strategically 

design technologies. For example, if a researcher wants to design sequences that bind 

very rapidly or with high efficiency, he or she could place certain bases in specific 

locations, so that the hybridization reaction could occur faster or more reliably 

(http://www.azonano.com/news.asp?newsID=13989).

http://www.azonano.com/news.asp?newsID=13989
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Figure 1.3: Example of hybridization and denaturation of two single-stranded DNA

Figure 1.4: Example of hairpin formation

1.3 The Im portance of DNA Sequence Design

DNA molecule is presently used in many areas far beyond its traditional 

function. Unconventionally, the first DNA-based computation has been firstly 

demonstrated by Adleman in 1994 (Adleman, 1994). He manipulated DNA to solve 

a combinatorial problem. DNA molecules have also been used as information storage



media and three dimensional structural materials for nanotechnology (Seiffert and 

Huhle, 2008).

In DNA computing field, one of the major concerns is reliability. The 

reliability of the computation is determined by whether the oligonucleotides can be 

hybridized in a predetermined way. In DNA computing, information is encoded as 

DNA strands. Each DNA strand is composed of short sequences. DNA computing 

depends on the hybridization, which allows short single-stranded DNA sequences to 

self-assemble to form long DNA molecules. The key to success in DNA computing 

is the availability of a large collection of DNA sequences pairs that are unique from 

one another.

However, the necessity of DNA sequence design appears not only in DNA 

computing, but also in other fields, such as DNA nanotechnology and biotechnology 

(Reece, 2004). Due to the differences in experimental requirements, it seems 

impossible to establish an all-purpose library of sequences that effectively caters all 

requirements of laboratory experiments. Since the design of DNA sequences depends 

on the protocol of biological experiments, a method for the systematically design of 

DNA sequences is highly required (Kashiwamura et al., 2003).

Designing good DNA sequences to control DNA reaction is a fundamental 

issue in the fields of DNA nanotechnology, DNA computing, and DNA 

biotechnology. It is important to ensure that DNA molecules react as desired because 

unexpected secondary structures of DNA sequences may cause unwanted results.

1.3.1 DNA Nanotechnology

Currently, nanotechnology is a growing academic field that has high research 

potential for development, and has left nearly no part of natural and engineering 

sciences untouched. There are new materials that have remarkable properties because 

of their internal nanoscale structure. These remarkable properties have led to the



building of nanomechanical devices, and even the possibility to force single 

molecules and atoms into well defined arrangements (Seiffert and Huhle, 2008).

DNA nanotechnology makes use of branched DNA structures to create DNA 

complexes with useful properties. For example, an assembly of DNA branched four­

armed junctions can be made into 2-D lattice, which are complementary to each 

other in the correct pattern. Based on Watson-Crick base pairing, only portions of the 

strands which are complementary to each other will hybridize to each other to form 

duplex DNA. Figure 1.5 shows an example of the lattice made by DNA sequences.

Many different DNA nanostructures have already been built in the laboratory. 

There are simple junctions, more complex tiles like double-crossover, two­

dimensional lattices assembled from building blocks cubes, tubes, and even nano­

mechanical devices have also been created (Seiffert and Huhle, 2008). As an 

example, Figure 1.6 shows the DNA nanostructure of cubes, tetrahedra, tile, and 

truncated octahedron. All these DNA structures were produced by three major steps:

(i) structure design (ii) sequence design, and (iii) building the structure by self­

assembly in the laboratory. Among these three, sequence design is a very crucial 

step. The base sequences of the single strands determine the resulting DNA structure. 

Taking the wrong sequences would produce undesired structures. Therefore, many 

works have concentrated on producing good DNA sequences to avoid wrong results 

or structures (Seiffert and Huhle, 2008).

Figure 1.5: An example of four-armed junctions, assembled to create 2-D lattice

(Seeman et al., 1998)
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Figure 1.6: Examples of DNA nanostructures (Seeman et al., 1998)

1.3.2 DNA Computing

Since the Adleman’s experiment of Hamiltonian path problem (HPP), DNA 

computing has become the attention for researchers to overcome the limitations of 

sequential silicon-based computing (Adleman, 1994). They have paid attention to its 

high storage density, massive parallelism, and bio-compatible capability (Maley, 

1998). In showing of its computing power, DNA computing has been applied to 

various computational problems (Adleman, 1994), logical problem (Liu et al., 2000),



Boolean circuit development (Owenson et al., 2001), computational model (Mills, 

2002), medical problem (Benenson et al., 2004), and associative memory 

construction (Baum, 1995).

In DNA computing, single-stranded DNAs must hybridize correctly to 

produce a good solution. Otherwise, DNA computing fails to generate identical 

results for the same problem and algorithm. Also, DNAs could be wasted if the 

DNAs perform undesirable reaction. Usually, in DNA computing, the calculation 

process consists of several chemical reactions, where the successful lab experiment 

depends on the DNA sequences that have been used. Thus, DNA sequence design 

turns out to be one of the approaches to achieve high computation accuracy and 

becomes one of the most practical and important research topics in DNA computing.

1.3.3 DNA Biotechnology

Biotechnology is a technology based on biology, agriculture, food science, 

and medicine. Biotechnology draws on pure biological sciences such as genetics, 

microbiology, molecular or DNA biology, biochemistry, and may also depends on 

knowledge and methods from outside the sphere of biology such as in chemical 

engineering, information technology, and biorobotics.

One of the popular and necessary techniques used in biotechnology is 

polymerase chain reaction (PCR). PCR techniques are applied in many areas of 

biotechnology including protein engineering, cloning, forensics (DNA 

fingerprinting) and for analysis of environmental samples. PCR is a method for 

amplifying segments of DNA by generating multiple copies of segments using DNA 

polymerase enzymes under controlled conditions. PCR can produce 2n copies of the 

same molecules in n cycle (Saaid, 2008). ‘Primers’, which are usually about 20 bases 

long are attached to the specific start and end sites of the template for replication. 

PCR usually runs for 30-40 cycles of 3 phases: denaturation of DNA at about 95°C, 

annealing at 55°C, and extension at 74°C (Deaton et al., 1996). Figure 1.7 shows the



process of PCR for a cycle, where the primers are needed to be designed to start the 

annealing process in step 2 (Vierstraete, 1999).

30 - 40 cycles of 3 steps :

D N A

Single-stranded mTmTTiiniiniiiHitiiiiiiiiti iffiiTmrmniniiiin iTniTuiii m u n i

Step 1 : denaturation

1 minut 94 °C

D N A s

5 ' ...................... mi fnTnrnniTnnTririinTTTnTn̂ i mm y step 2: annealing

D N A  Primers S' f 45 seconds 54 °C

''TTTnTnmrrTi1013‘ .
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 ̂ ^  ̂ I . x  . \ \  1 /  /  2 minutes 72 °C

Figure 1.7: Polymerase chain reaction (Vierstraete, 1999).

only dNTP's
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1.4 Problem  Statem ent and Objective

DNA sequence design problem is a multi-objective optimization (MOO) 

problem, where more than one objective needs to be optimized subjected to several

constraints.

Given several short-stranded DNAs in a test tube, these DNAs tend to 

hybridize to other molecule in the tube subject to Watson-Crick complement when 

the temperature is lowered. The DNA sequence design problem is to avoid these 

hybridizations when the temperature is lowered. The probability of a sequence to 

hybridize with itself and other DNAs can be measured using Hmeasure, similarity,



hairpin, and continuity. These objectives are subjected to GCcontent and melting 

temperature constraints.

Generally, given a number of objective functions and constraints in DNA 

sequence design, the objective of the problem is to design and produce sets of good 

DNA sequences with minimized values of the objective functions. If this condition is 

achieved, it can be said that the sequences in the set are unique and cannot hybridize 

to each other.

1.5 Scope of W ork

For the design and development of PSO algorithm for DNA sequence design 

problem, the scope of this research has been defined as follows:

(i) The proposed approach is developed by considering four objective functions 

namely: Hmeasure, similarity, continuity, and hairpin and two constraints, 

which are GCcontent and melting temperature (Tm).

(ii) The research considers Continuous PSO and Binary PSO algorithms for 

optimizing of DNA sequences.

(iii) The multi-objective optimization problem of DNA sequence design is solved 

using aggregation-based method and criterion-based method, particularly 

vector evaluated PSO (VEPSO).

1.6 Thesis Contributions

The first contribution of this work is the new model employed to design DNA 

sequences using Continuous PSO algorithm. This model represents a dimension of 

the search space as one sequence. Therefore, a particle in the algorithm carries more



than one sequence, which is a set of DNA sequences. Other researches have 

implemented PSO algorithm with different representation of model and search space.

The second contribution of this work is the development of Binary PSO 

algorithm for DNA sequence design. This work is believed to be novel since there is 

no research work has been carried out to implement Binary PSO to solve the DNA 

sequence design problem.

The third contribution in this work is the employment of VEPSO method to 

solve MOO problem of DNA sequence design. In this method, four objectives are 

represented using four swarms. Each swarm minimizes only one objective function, 

and by the end of each iteration, these swarms share their information with each 

other. It is also found that so far no research has employed VEPSO method for DNA 

sequence design.

1.7 Thesis Organization

The thesis is organized as follows. Chapter 2 provides a review on the 

existing DNA sequence design approaches as well as the objective functions and 

constraints used. PSO algorithm is introduced briefly and the applications of PSO are 

also discussed in this chapter. In Chapter 3, four specific objective functions and 

constraints are decided and explained in detail.

Chapter 4 covers the concept of PSO algorithm for continuous and binary 

search spaces. Description on the fundamental of multi-objectives optimization 

(MOO) problem is also provided. Methods to solve MOO problems are discussed 

briefly. Chapter 5 is devoted for the implementation of aggregation-based method 

using Continuous PSO and Binary PSO algorithm for DNA sequence design 

problem. The results from both models is compared and discussed. This chapter also 

compares the results from Binary PSO with other existing method.



Chapter 6 provides an implementation of DNA sequence design using vector 

evaluated PSO (VEPSO) based on Binary PSO. Then, for further analysis, VEPSO is 

implemented for pairs of two objective functions only. Lastly, Chapter 7 summarizes 

and concludes this thesis. Future works are also presented.
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