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ABSTRACT 

 

 

 

 

SCMP (Single Component Multiphase) - LBM (Lattice Boltzmann Model) scheme 

was developed in order to simulate the phenomenon of droplet motion under different 

conditions. This study more concern on phenomenon of droplet falling from a flat ceiling 

and the movement of droplet on inclined surface. Various type of parameter such as contact 

angle, gravitational force and angle of inclined surface are used to interpret the results 

obtained in order to explain the phenomenon of droplet dynamics. The basic idea of SCMP 

LBM is incorporating the free energy method in lattice Boltzmann governing equation. The 

Van Der Waals real gas equation of state is derived to determine different of phases in the 

system.  The new equilibrium distribution  is calculated into the SCMP LBM equation. 

The capillary and gravitational effects are incorporated into SCMP LBM equation via 

pressure tensor and the new velocity in calculation of equilibrium distribution function, 

.Both capillary and gravity-driven flow contributes in different regimes of droplet 

shapes. Good agreement was obtained between the present approach and those previous 

studies using Navier-Stokes solver and original LBM. 
 

 
 
 
 
 
 
 
 
 
 
 



 

 

 

ABSTRAK 

 

 

 

 

Simulasi untuk fenomena pergerakan titisan bendalir kecil dalam pelbagai keadaan 

telah dibangunkan menggunakan kaedah SCMP (Single Component Multiphase) - LBM 

(Lattice Boltzmann Model). Fenomena titisan bendalir jatuh daripada siling yang rata dan 

pergerakan titisan di atas permukaan yang condong dititit beratkan. Pelbagai jenis 

pembolehubah seperti sudut lekapan, daya graviti dan sudut permukaan condong digunakan 

untuk mentafsirkan fenomena titisan bendalir ini dengan lebih jelas.  Idea asas di dalam 

SCMP LBM, adalah dengan menggunakan kaedah tenaga terbebas di dalam persamaan 

lattice Boltzmann. Persamaan gas nyata daripada Van Der Waals diterbitkan untuk 

menentukan setiap fasa yang berbeza di dalam sistem. Dengan menggunakan pendekatan 

daripada Brient’s, nilai baru fungsi taburan keseimbangan dikira untuk dimasukkan ke 

dalam persamaan SCMP LBM. Kesan kapilari dan graviti telah dimasukkan ke dalam 

persamaan SCMP LBM melalui persamaan tekanan lekapan dan nilai baru halaju di dalam 

fungsi taburan keseimbangan. Kedua-dua kesan ini memberikan bentuk titisan yang 

berbeza. Perbandingan keputusan yang diperolehi daripada pendekatan yang dilaksanakan 

dengan kajian lepas yang menggunakan Navier-Stokes dan original LBM mendapati ianya 

mencapai persamaan yang ketara jelasnya. 



 i

 

 

 

TABLE OF CONTENTS 

 

 

 

 

CHAPTER     TITLE    PAGE 

 

 

        

TABLE OF CONTENTS      i 

LIST OF TABLES       iv  

LIST OF FIGURES       v 

LIST OF SYMBOLS      vii 

 
CHAPTER 1 

INTRODUCTION       1 

1.1 Background       1 

1.2 Computational Fluid Dynamics    2 

1.3 Lattice Boltzmann Model     3 

1.4 Classical CFD versus Lattice Boltzmann Methods  4 

1.5 Objective       5 

1.6 Scope         5  

  

CHAPTER 2 

LATTICE BOLTZMANN MODEL     6 

2.1 Classical Boltzmann equation     6 

2.2 Bhatnagar-Gross-Krook (BGK) Collision model  8 

2.3 Boundary Conditions      9 

 



 ii

2.3.1 Periodic Boundary Condition    10 

2.3.2 Free Slip Boundary Condition    10 

2.3.3 Bounceback Boundary Condition   11 

2.4 Relaxation Time      12 

2.5 The Lattice Boltzmann Equation    13 

2.6 Isothermal Lattice Boltzmann Models   14 

 

CHAPTER 3 

  INTRODUCTION TO MULTIPHASE FLOW    16 

  3.1 Introduction       16 

  3.2 Van Der Waals Fluid      22 

  3.3 Phase (Liquid-Vapor) Separation and Interface   25 

    Minimization 

  3.4 Free energy lattice Boltzmann    26 

   3.4.1 Briant’s Approach     26 

   3.4.2 Yonetsu’s Approach     28 

3.5 Thermodynamics of the fluid    29 

3.6 Static wetting       31 

3.6.1 Cahn theory      32 

3.6.2 Partial wetting in lattice Boltzmann   34  

  

CHAPTER 4 

  METHODOLOGY       35 

  4.1 Methodology       35 

  4.2 Flow Chart       37 

 
CHAPTER 5 

RESULT AND DISCUSSION     41 

5.1 Original LBM Code Validation Analysis   41 

5.1.1 Flow pattern of two rectangular cylinders  41 

5.1.2 Bubble Rise      42 



1 
 

 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Background 

 

 

 At this recent day, simulation is a very important as a tool to predict the answer of 

the problem in fluid dynamic. The application of computational method promising a good 

approximating results to the physical world. A lot of works has been done and still in 

discovering for a better computational method to solve the problem and improving the 

method that already exist.   

 

 There are numerous computational exist in literature. One of them is used to solve 

the fluid flow problem. Computational fluid dynamics (CFD) is one of the branches of fluid 

mechanics that uses numerical methods and algorithms to solve and analyze problems that 

involve fluid flows.  

 

The fundamental law of any CFD problem is the Navier-Stokes equations, which 

define any single-phase fluid flow. The classical Navier-Stokes equations have been used 

from 150 years ago which describe viscous fluid flow.  These equations can be simplified 

by removing terms describing viscosity to yield the Euler equations. Further simplification, 
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by removing terms describing vortices yields the full potential equations. They are non-

linear partial differential equations which express mass and momentum conservation for 

fluids and can only be easily solved for only simple cases.  These equations can be 

linearized to yield the linearized potential equations. Solving this equation is a very 

challenging task. A lot of numerical method was introduced by mathematicians and 

engineers in CFD, such as Finite Difference Method, Finite Element Method and Finite 

Volume Method to solve the Navier-Stokes equation numerically. 

 

 

1.2  Computational fluid dynamics 

 

In conventional computational fluid dynamics (CFD), scientists and engineers 

describe a fluid flow by introducing a representative control-volume element, on which 

macroscopic mass and momentum are conserved. The conservation laws of mass and 

momentum lead to a "macroscopic" mathematical model, governed by the Navier-Stokes 

equation, which is traditionally discretized and applied to a physical domain of interest. 

Physical variables such as velocity and pressure at each grid point around the element can 

be numerically computed. 

 

Computational fluid dynamics (CFD) is the numerical simulation of fluid flows. 

CFD become essential tool in solving the Navier-Stokes Equation, the continuity equation, 

the energy equation and equation derived from them. Incompressible Navier-Stokes 

equation is the heart of the CFD, which represent a local conservation law for the 

momentum in the system. This equation only partially addresses the complexity of most 

fluids of interest in engineering applications; it is successfully applied in different areas for 

predictions of fluid flows.  

 

The classical approach in CFD, treat of such fluids and describe the new physical 

properties in terms of transport phenomena related to a new observable, macroscopic 

property. A PDE is written down for the dynamics of this property then is solved by an 

appropriate numerical technique. In a fluid with important temperature variations for 
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example, a new observable property, the temperature, is introduced and its dynamics is 

described by a heat transport equation.  

 

 

1.3 Lattice Boltzmann Model 

 

          In recent years, the lattice Boltzmann method (LBM) has attracted much interest in 

the physics and engineering communities. As a different approach from the conventional 

computational fluid dynamics (CFD), the LBM has been demonstrated to be successful in 

simulations of fluid flow and other types of complex physical system. In particular, this 

method is promising for simulations of multiphase and multicomponent fluid flow 

involving complex interfacial dynamics. It is a discrete computational method based upon 

the Boltzmann equation. It considers a typical volume element of fluid to be composed of a 

collection of particles that are represented by a particle velocity distribution function for 

each fluid component at each grid point. It obtains macroscopic flow information based on 

integration of probability density function. 

 

            Unlike other conventional CFD that directly simulates evolution of the macroscopic 

kinetic equation for the single particle distribution function, the time is counted in discrete 

time steps and the fluid particles can collide with each other as they move, possibly under 

applied forces. The rules governing the collisions are designed such that the time-average 

motion of the particles is consistent with the Navier-Stokes equation.  

 

          A major advantage of lattice Boltzmann method is the ease and accuracy with which 

it enables complicated boundary geometries to be processed, hence, investigating suitable 

boundary conditions for lattice Boltzmann simulations has become a highly researched area 

in many engineering and scientific applications. Another advantage of using LBM is the 

simplicity of programming, the parallelism of the algorithm, and the capability of 

incorporating complex microscopic interactions. It is an approach that bridges microscopic 

phenomena with the continuum macroscopic equations. Further, it can model the time 

evolution of the systems. 
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1.4 Classical CFD versus Lattice Boltzmann Methods 

  

The conventional simulation of fluid flow and other physical processes generally 

starts from non linear partial differential equation (PDEs). These PDEs are discretized by 

either finite differences, finite element, finite volume or spectral methods. The resulting 

algebraic equations of ordinary differential equation are solved by standard numerical 

methods. 

 In LBM, the starting point is a discrete microscopic model governed by Boltzmann 

equation. The derivation of the corresponding macroscopic equation requires multi-scale 

analysis [Wolf Gladrow, 2000].  

 

 

 

 

 

               

 

 

 

 

 

 

Figure 1.1: Classical CFD versus LBM 
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