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ABSTRACT 

 

 

 

 

Recent revolutionary progress of the internet and wireless technologies has created a 
concept of the “ubiquitous network society” for this 21st century.  A so-called Intelligent 
Quantum (IQ) chip has been proposed as the promising electronic device for the ubiquitous 
network society environments.  An IQ chip is an III-V semiconductor chip with sizes of 
millimeter square or less where nanometer scale quantum processors and memories are 
integrated on the same chip with other capabilities of wireless power supply and various 
sensing functions.  It is an attempt to endow “more intelligence” than simple identification 
(ID) like in radio frequency identification detector (RFID) chips to semiconductor chips 
so that they can be utilized as versatile tiny “knowledge vehicles” to be embedded anywhere 
in the society, or even within the bodies of human beings and other living species.  This 
study is carried out to focus on the development of wireless microwave power 
transmission/supply and detector technology.  Integrated on-chip device (integration between 
antenna and Schottky diode) is one of the most potential devices to be integrated on the IQ 
chip to act as the wireless power supply as well as power detector.  The feasibility of direct 
integration between planar dipole antennas with Schottky diode via coplanar waveguide 
(CPW) transmission line without any matching circuits inserted between them for 
nanosystem application is studied.  First, the fabrication and radio frequency (RF) 
characterization of planar dipole antenna facilitated with CPW structure on semi-insulated 
gallium arsenide (GaAs) are performed.  The return loss of dipole antennas are evaluated by 
varying their lengths, widths and also metal thicknesses for the purpose of use in the super 
high frequency (SHF) band.  Experimentally, the return loss down to -54 dB with a metal 
thickness of 50 nm is obtained.  The difference is only 2 % - 4 % between simulated and 
measured results for the frequency bandwidth at -10 dB. It is shown that the fundamental 
resonant frequency of dipole antennas can be controlled by the dipole length but unchanged 
with the width and metal thickness.  Next, the fabrication, direct current (DC) and RF 
characterization of the AlGaAs/GaAs high-electron mobility-transistor (HEMT) Schottky 
diode is performed.  The fabricated devices show good rectification with a Schottky barrier 
height of 0.5289 - 0.5468 eV for Nickel/Gold (Ni/Au) metallization.  The differences of 
Schottky barrier height from theoretical value are due to the fabrication process and smaller 
contact area.  The RF signals are well detected and rectified by the fabricated Schottky 
diodes and stable DC output voltage is obtained.  The cut-off frequency up to 20 GHz is 
estimated in direct injection experiments. The output current is in the range of several tens of 
microamperes (μA) which is adequate for low current device application.  Finally, an 
integrated device is fabricated and tested in direct RF irradiation. However, a reception of 
RF signal by dipole antenna is weak.  Further considerations on the polarization of 
irradiation and radiation distance of the antenna need to be carried out.  These results provide 
new breakthrough ideas for the direct on-chip integration technology towards realization of 
fast RF damaging signal detection and towards realization of ultra-low power on-chip 
rectenna technology for nanosystem application. 
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ABSTRAK 

 

 

 

 

Kemajuan internet dan teknologi wayarles telah mencipta satu konsep “ubiquitous 
network society” untuk abad ke-21.  Cip Kuantum Pintar (IQ) dicadangkan sebagai peranti 
elektronik yang berpotensi untuk persekitaran “ubiquitous network society”.  Cip IQ adalah 
cip III-V semikonduktor yang berukuran milimeter persegi atau kurang dimana mempunyai 
pemproses skala kuantum nanometer dan ingatan yang dimuatkan dalam satu cip dan 
berkebolehan sebagai bekalan kuasa wayarles dan pelbagai fungsi penderiaan.  Satu 
lembaran baru yang “lebih pintar” dihasilkan berbanding pengenalan mudah (ID) seperti cip 
pengesan pengenalan radio frekuensi (RFID) kepada cip semikonduktor yang serba boleh 
seperti “perantara ilmu” untuk digunakan dimana jua atau dalam badan manusia dan hidupan 
lain. Penyelidikan ini menumpu kepada penghasilan penghantaran/bekalan kuasa 
mikrogelombang wayarles dan teknologi pengesan.  Peranti dalam cip (penyepaduan antara 
antena dan diod Schottky) adalah peranti yang berpontensi untuk dimuatkan dalam cip IQ 
untuk bertindak sebagai bekalan kuasa wayarles dan pengesan kuasa.  Penyepaduan secara 
terus  antara antena dwikutub dan diod Schottky melalui pandu gelombang sesatah (CPW) 
tanpa menggunakan sebarang litar penyesuaian untuk aplikasi nanosistem dibentangkan.  
Pertama, fabrikasi dan pencirian radio frekuensi (RF) struktur antena dwikutub sesatah 
dengan struktur CPW atas substrat separuh tebat galium arsenida (GaAs) dikaji.  Kehilangan 
balikan struktur antenna dwikutub ini dikaji dengan mempelbagaikan panjang dan tebal 
antena dan beroperasi dalam julat frekuensi yang sangat tinggi (SHF).  Secara eksperimen, 
kehilangan balikan sebanyak -54 dB dengan ketebalan logam 50 nm diperolehi.  Perbezaan 
sebanyak 2 % - 4 % sahaja antara keputusan simulasi dan pengukuran untuk kelebaran jalur 
frekuensi pada -10 dB.  Ini menunjukkan, frekuensi salun struktur antena dwikutub dapat 
dikawal dengan panjang antena tetapi tidak berubah dengan perubahan ketebalan antena dan 
logam.  Kemudian, fabrikasi dan pencirian arus terus (DC) dan RF untuk AlGaAs/GaAs 
transistor-pergerakan-elektron-tinggi (HEMT) diod Schottky dibentangkan.  Peranti yang 
difabrikasi menunjukkan sifat rektifikasi yang bagus dengan penghalang kualiti Schottky 
antara 0.5289 - 0.5468 eV dengan kelogaman Nikel/Emas (Ni/Au).  Perbezaan nilai 
penghalang kualiti Schottky ini dengan nilai teori mungkin disebabkan oleh proses fabrikasi 
dan kawasan hubungan yang kecil.  Isyarat RF dikesan dengan baik dan diolah oleh diod 
Schottky dan voltan keluaran DC yang stabil diperolehi.  Frekuensi potong sehingga 20 GHz 
diperolehi daripada eksperimen suntikan secara terus.  Arus keluaran adalah dalam julat 
mikroampere (μA) yang bersesuaian untuk aplikasi peranti arus rendah. Akhirnya, peranti 
dalam cip difabrikasi dan diuji dalam sinaran RF secara terus. Walaubagaimanapun, 
penerimaan isyarat RF oleh antena dwikutub adalah sangat lemah.  Pertimbangan-
pertimbangan lanjut pada sinaran polarisasi dan jarak sinaran antara antena perlu 
dilaksanakan untuk meningkatkan sambutan isyarat.  Keputusan awal ini akan membuka 
lembaran baru untuk teknologi kombinasi cip secara terus ke arah merialisasikan pengesanan 
isyarat RF yang cepat dan juga dapat bertindak sebagai pemberi kuasa yang rendah dalam 
teknologi rektena untuk aplikasi nanosistem.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Explosive growth of internets and wireless technologies starting in the late 

20th century has opened up prospects towards an advanced ubiquitous network 

society.  Wireless power technologies have been proposed for many years and are 

expected to be one of the most promising energy transfer methods in the near future, 

especially in space power supply and emergency power recovery [1].  This wireless 

system would be the groundwork for ubiquitous network society.  The vision of 

ubiquitous network society suggests a world in which any information can be 

accessed from anywhere at anytime and by anyone [2].  New and existing 

technologies making this vision a reality. 

   

 

A so called Intelligent Quantum (IQ) chip with sizes of several millimeters 

square proposed by Hasegawa et al. [3] is capable to coincide to this ubiquitous 

concept.  The integration of antenna and Schottky diode can be used as radio 

frequency (RF) detectors and hence are ideal for applications as rectenna device to 

supply direct current (DC) power to generate other on-chip devices.  Schottky diode 

is widely considered as a major rectifier due to its fast rectifying operation and 

suitability for on-chip integration.  As a semiconductor material for Schottky diode, 
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three-five (III-V) based compound materials have been considered as the most 

promising materials because of their stability, capability of making a good Schottky 

contact and well-developed fabrication process technology. Higher electron mobility 

exists in two dimensional electron gas (2DEG) layer making it suitable for high-

frequency devices [4, 5]. It has also emerged to be suitable for nanostructure 

formation for the development of the IQ chip [3].  A novel feature here is the total 

integration with excellent outcomes over and above those obtained from putting 

together the commercial components.  The small dimensions and the ease of 

manufacturing with low cost are the desirable attributes.   

 

 

In this study, the investigation on the direct integration of planar dipole 

antenna to Schottky diode via coplanar waveguide (CPW) transmission line without 

insertion of any matching circuit is carried out.  First, the fabrication and RF 

characterization of planar dipole antenna facilitated with CPW structure on semi-

insulated gallium arsenide (GaAs) are performed. Next, the design, fabrication and 

RF characterization of Schottky diodes on n-AlGaAs/GaAs high-electron-mobility-

transistor (HEMT) structure are performed.  Finally, an integrated device (Schottky 

diode + dipole antenna) is fabricated and tested in direct RF irradiation. 

 

 

 

 

1.2 Research Motivation 

 

 

 Current advancements in communication technology and significant growth 

in the wireless communication market and consumer demands demonstrate the need 

for smaller, more reliable and power efficient integrated wireless systems [6].  

Integrating entire transceivers on a single chip is the vision for future wireless 

systems.  This has the benefit of cost reduction and improving system reliability.  As 

mentioned, an IQ chip is a III-V semiconductor chip with sizes of millimeter square 

where nanometer scale quantum processors and memories are integrated on chip.  

Figure 1.1 shows the concept of the IQ chips [3]. 
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Figure 1.1: The concept of the IQ chips 

 

 

Rectenna is one of the most potential devices to be integrated on the IQ chip 

to form the wireless power supply.  Therefore, the rectenna should have small 

dimensions as well.  This results in small antenna area and consequently, a low 

amount of received power.  Because of these limitations, wireless power transfer 

using such devices is considered to be suitable for low power applications.  To our 

knowledge, almost all past rectennas were designed for over 100 milliwatt (mW) 

rectifying and the RF-to-DC power conversion efficiency is less than 20 % at the 1 

mW microwave input [7].  Various kinds of rectennas today have been developed 

using the matching circuit.  Consequently, the dimensions of the rectenna enlarge 

making it a high cost rectenna.  Thus, a small dimension of rectenna devices needs to 

be developed. 

 

 

RF power detector also the most potential devices to be integrated on the IQ 

chips.  RF detector is build to sense the potentially damaging electromagnetic (EM) 

signals to avoid circuit failures.  It is well known that sufficiently intense EM signals 

in the frequency range of 200 MHz to 5 GHz can cause upset or damage in electronic 

systems [8].  The Schottky diode rectifies the incident RF signal, and the capacitor 

and the resistor produce a DC output by filtering out the high frequency part of the 

rectified signal.  RF detection up to 100 GHz have been reported [9] in special 
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molecular beam epitaxy (MBE) grown nanostructures.  However, detection of only 

up to 600 MHz has been reported [10, 11] in foundary-fabricated Si-based diodes.  

Schottky diodes fabricated using complimentary metal-oxide semiconductor 

(CMOS) technologies are found to detect RF signals up to 10 GHz in direct injection 

experiments.  The detection in the range of 9.5 - 19.5 GHz in microwave irradiation 

experiments have also been reported [12].  However, the design and fabrication of 

planar dipole antenna and Schottky diode on III-V semiconductor based HEMT 

structure for RF power detector and rectenna are not extensively investigated.   

 

 

 

 

1.3 Research Objectives  

 

 

The objective of this research is to investigate the possibility of direct 

integration between dipole antenna and III–V based Schottky diode without any 

insertion of matching circuit by applying direct connection between dipole antenna 

and Schottky diode through CPW structure.   

 

 

 

 

1.4  Scopes of the Research 

 

 

The scopes set for this research are as follows: 

 

i. Design and characterization of the planar dipole antenna structure 

using Commercial Electromagnetic Sonnet Suites Simulator. 

  

ii. Fabrication of the dipole antenna to verify simulation results. 
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iii. Analysis of the dependence of antenna dimensions and metal 

thickness on the return loss characteristics and resonant frequency. 

 

iv. Design, fabrication and characterization (DC & RF) of an n-

AlGaAs/GaAs HEMT Schottky diode. 

 

v. Preliminary experimental work on integrated dipole antenna and 

Schottky diode without insertion of any matching circuit. 

 

 

 

 

1.5 Research Activities 

 

 

 The implementation of this research is summarized into flowchart as shown 

in Figure 1.2.  This study is focused on the direct integration of dipole antenna and 

Schottky diode without insertion of any matching circuit.  At the beginning stage, the 

design, fabrication and characterization of individual planar dipole antenna and 

Schottky diode are conducted in parallel.  Here, the RF characteristics of planar 

dipole antenna and Schottky diode facilitated with CPW structure are investigated by 

applying direct injection of RF signals.  Then, the fabrication and characterization of 

the integrated dipole antenna and Schottky diode fabricated on n-AlGaAs/GaAs 

HEMT structure are investigated by applying direct irradiation of RF signals.  Figure 

1.3 and Figure 1.4 show the research flow of planar dipole antenna and Schottky 

diode respectively. 
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Figure 1.2: Research activities. 

 

 

 

 

 

 

 

 

Optimization of integrated devices 
(Future work) 

Fabrication and Characterization of Planar Dipole 
Antenna and Schottky Diode for On-Chip Electronic 

Device Integration 

Fabrication and evaluation of integrated devices 
(Preliminary work) 

Rectifying 
Circuit 

Dipole 
Antenna 

Design and evaluation of dipole  
type antenna 
(Simulation)

Fabrication and evaluation of 
dipole type antenna 
(RF characteristics)

Design the Schottky diode 
structure 

Fabrication and evaluation of 
Schottky diode 

(DC and RF characteristics)
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Figure 1.3: Research flow of planar dipole antenna. 

 

 

 

 

 

Characterization of dipole antenna 
 

Fabrication and Characterization of Planar 
Dipole Antenna with CPW Structure 

Calculation of CPW structure 
using Wheeler equation 

Fabrication of dipole antenna using standard 
photolithography process 

 

CPW Structure Planar Dipole Antenna  

Simulation of dipole antenna 
using Sonnet Simulator Simulation of CPW structure 

using Sonnet Simulator  

Calculation of dipole antenna 
 

Optimization of dipole antenna 
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Figure 1.4: Research flow of Schottky diode. 

 

 

 

 

Characterization of Schottky diode 
 

Design, Fabrication and Characterization of 
Schottky diode 

Designation of Schottky diode 
using AutoCad 

Fabrication of Schottky diode using standard 
photolithography process 

 

Optimization of Schottky diode 
 

Current-Voltage (I-V) 
Measurement 

• RF-to-DC Direct Power 
Measurement 

• RF-to-DC Conversion, 
Voltage and Current 

Measurement 
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1.6 Overview of Thesis Organization 

 

  

 This thesis is organized into 7 chapters.  Chapter 1 gives an overview of the 

research background, objective, scopes and research activities. 

 

 

In Chapter 2, a brief discussion of unique applications of microwaves 

technologies is presented.  The discussion of basic material for microwave 

technologies is also presented.  This chapter also describes the basic concept and 

theory of planar dipole antenna and Schottky diode as the devices of microwave 

technologies.  Furthermore, the fundamental of CPW structure are also discussed 

briefly.   

 

 

In Chapter 3, mainly a discussion about the device fabrication and 

measurement technique is presented.  In particular, this chapter describes the 

fabrication process for the dipole antenna, Schottky diode and integrated devices 

structure, and a measurement system.  In this research, the fabrication of dipole 

antenna, Schottky diode and integrated devices is carried in clean room facilities.  

The major fabrications involved are photolithography, wet chemical etching, metal 

deposition and a standard lift-off technique.  In addition, the semiconductor material 

structure for the devices also discussed briefly.  

 

 

In Chapter 4, the RF characteristics of planar dipole antenna facilitated with 

CPW structure in millimeter-wave region is described.  The dependence of 

fundamental resonant frequency of the dipole antenna on the antenna’s width, length 

and metal thickness is presented. Basically, the characteristics of reflection or return 

loss are measured. 

 

 

In Chapter 5, the DC and RF characteristics of Schottky diode on n-

AlGaAs/GaAs HEMT structure are presented.  The feasibility for direct integration 
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planar dipole antenna with Schottky diode via CPW transmission line without 

insertion of any matching circuit for fast conversion of RF signals in nanocircuits and 

nanosystems to avoid circuit failure and also to apply ultra-low DC current to 

generate those other on-chip nanodevices are presented.   

 

 

In Chapter 6, the preliminary experimental results of integrated dipole 

antenna and Schottky diode fabricated on an n-AlGaAs/GaAs HEMT structure which 

should lead a new breakthrough for on-chip electronic device application in 

nanosystem is presented.    From the obtained results of the dipole antenna and 

Schottky diode that presented in previous section, it is expected that direct 

integration via short CPW transmission line between dipole antenna and Schottky 

diode can be achieved without any matching circuit.   

 

 

Finally, Chapter 7 concludes the contribution of present work and the 

directions of future work.   

 

 

There are some appendices which present detail information regarding to this 

research. 

 

 

 

 

 

 

 

 

 

 

 

 

 




