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ABSTRACT 

 

 

 

Experiments involving extraction of palm oil from treated palm fleshy 

mesocarp were carried out using a dynamic method to determine palm oil yield and 

solubility in sub-critical 1,1,1,2-tetrafluoroethane (R134a). Effects of crucial process 

parameters including R134a pressure, temperature and flowrate as well as sample 

pre-treatment on palm oil yield and solubility were examined.  R134a pressure was 

varied from 60 to 100 bar whereas temperature, from 40o to 80oC. The palm oil 

extracts were analyzed using gas chromatography (GC) analysis and ultraviolet-

visible (UV-Vis) Spectrophotometer to determine the compositions of fatty acids and 

β-carotene extracted.  The experiments were designed using response surface 

methodology (RSM) to model the extraction yield of palm oil as a function of 

pressure and temperature.  The experimental palm oil solubility data was 

successfully correlated using Chrastil model, density-based model and temperature-

pressure (T-P) model by means of multiple regressions for prediction purposes.  The 

coefficient of determination, R2, values for the empirical models were 93.68%, 

96.38% and 93.97%, respectively.  Analysis of variance (ANOVA) showed that palm 

oil yields and solubility were highly temperature-dependent and moderately pressure-

dependent, with p-value of <0.05 at 95% significant level.  Sub-critical R134a was a 

suitable solvent for palm oil extraction since the degree of extraction (defined as the 

ratio of yield by R134a to Soxhlet) was 93.34%.  Substantial oil yields and solubility 

at much lower pressure than those required by supercritical carbon dioxide proved 

that sub-critical R134a is an alternative solvent for palm oil extraction even though 

supercritical carbon dioxide leads to higher oil yields.   
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ABSTRAK 

 

 

 

Pengekstrakan minyak kelapa sawit daripada mesokarpa buah sawit 

dilakukan secara eksperimen melalui satu kaedah dinamik untuk menentukan 

keterlarutan minyak sawit dan kebolehan pengekstrakan di dalam subgenting 

(1,1,1,2-tetrafluoroethane) R134a dengan mengambil kira kesan parameter proses 

termasuk tekanan, suhu, kadar alir R314a dan rawatan sampel.  Tekanan bagi R134a 

diubah dari 60 ke 100 bar manakala suhu adalah dari 40o ke 80oC.  Ekstrak minyak 

sawit yang dianalisis melalui kromatografi gas dan Spektrofotometer UL-Nampak 

untuk menentukan komposisi asid lemak dan β-carotina yang diekstrak.  Eksperimen 

telah direkabentuk melalui kaedah permukaan sambutan (RSM) untuk permodelan 

hasil pengekstrakan minyak sawit terhadap suhu dan tekanan sistem.  Data 

keterlarutan minyak sawit yang diperolehi telah berjaya berkolerasi menggunakan 

model Chastil, model berasaskan ketumpatan dan model suhu-tekanan (T-P) melalui 

kaedah regresi berganda.  Nilai pekali penentuan, R2, bagi setiap model empirikal 

tersebut adalah 93.68%, 96.38% and 93.97%.  Analisis varians (ANOVA) 

menunjukkan keterlarutan dan hasil ekstrak minyak sawit adalah sangat dipengaruhi 

oleh suhu dan separa dipengaruhi oleh tekanan apabila p-value<0.05 pada 95% tahap 

kepentingan bagi kedua-dua faktor suhu dan tekanan.  Keputusan eksperimen 

menunjukkan pelarut R134a boleh diaplikasikan proses pengekstrakan minyak sawit 

memandangkan darjah pengekstrakannya terhadap pengekstrakan Soxhlet mencapai 

sehingga 93.34%. Keterlarutan dan hasil pengekstrakan yang tinggi walau pada 

tekanan rendah membuktikan pelarut R134a boleh diaplikasikan dalam 

pengekstrakan minyak sawit.  Bagaimanapun, pelarut karbon dioksida lampau 

genting memberikan kadar ekstrasi yang lebih tinggi daripada pelarut subgenting 

R134a.  
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CHAPTER 1 
 

 

 

 

INTRODUCTION 
 

 

 

 

1.1 Outlook of Palm Oil Industry 
 

 

Palm oil is an important source of food and a major source of lipid.  Steady 

increase in the world population increases the demand for palm oil as an important 

source of edible oils and fats.  Almost 90% of the world palm oil production is 

traded as edible oils and fats.  Palm oil also account for about 13% of the total world 

production of oils and fats, and is expected to overtake soybean oil as the most 

important vegetable oil (Sundram et al., 2003). This phenomenon arises due to the 

unique characteristics of palm oil, particularly its potential health benefits.  

Therefore, high yields of the oil palm throughout the year are essential to meeting 

the high global expert market demand. 

 

The oil palm produces the highest tonnage of oil per hectare per year with 

minimum use of land see Figure 1.1.  The Figure 1.1 shows a comparison of oil palm 

with other major oil crops in the world.  The average yield of oil palm produced in a 

year was 3.74 tonne/hectare/year and contributed to 31.11% of the world’s total oil 

crop production.  This followed by soybean oil (29.78%), rapeseed oil (15.50%) and 

sunflower oil (9.37%) (MPOC and MPOB, 2007).   
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Figure 1.1: Comparison of palm oil with other oil crops for year 2006 

(MPOC and MPOB, 2007) 

 

 

Currently, most of the world’s production of palm oil comes from South-East 

Asia, in particular Malaysia and Indonesia (Sundram et al., 2003).  Malaysia and 

Indonesia continues to be the largest contributors, with the respective average of 

51% and 36% production of palm oil between the periods of 2002-2006 as shown in 

Figure 1.2 (MPOC and MPOB, 2007).  Therefore, as the biggest producer and 

exporter of palm oil and palm oil products, Malaysia plays an important role in 

fulfilling the growing global needs for oils and fats.    
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Figure 1.2: A Comparison of export of palm oil between Malaysia and other 
 
 

producer (MPOC and MPOB, 2007).
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1.2 Palm Oil Extraction 

 

 

Palm oil is produced from the fruit of oil palm tree (Elaeis Guineensis) which 

originated in West Guinea.  The average weight of each bunch varies between 10-

30kg and individual fruits are generally in the range of 8-20g.   As shown in Figure 

1.3, the individual fruit are made up of an outer skin (the exocarp), a pulp 

(mesocarp) containing the palm oil in a fibrous matrix; a central nut consisting of a 

shell (endocarp); and the kernel (the seed), which itself contains an oil, quite 

different from palm oil, resembling coconut oil (Sundram et al., 2003). 

 

Palm mesocarp

Kernel shell Exocarp 

Palm kernel

 

 
Figure 1.3: Anatomy of oil palm fruit 

(MPOC and MPOB, 2007) 
 

 

A unique feature of the oil palm is that it produces two types of oil - palm oil 

is extracted from mesocarp, and palm kernel oil is extracted from the palm kernel. 

Palm oil is rich in carotenoids, (pigments found in plants and animals) from which it 

derives its deep red colour, and the major component of its triglycerides is the 

palmitic acid which is a saturated fatty acid; hence it is a viscous semi-solid, under 

ambient typical condition and becoming solid fat in temperate climates.   
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1.2.1 Conventional Processing  

 

 

The common technique of extracting palm oil from fruits in Malaysian palm 

oil milling is by mechanical pressing using hydraulic press or screw press.  In the 

pre-processing stage, fruits bunches are collected from the plantation and delivered 

to the mill as soon as possible to avoid the increase of undesired content i.e. free 

fatty acid (FFA) due the enzymatic reaction.  The oil extraction process involves 

several steps namely sterilization, bunch stripping or threshing, digestion of fruits, 

followed by extraction of oil and clarification and purification as shown in Figure 

1.4.  

 

 

 

Bunch Sterilization 

Bunch Threshing 

Figure 1.4: Flow diagram of conventional palm oil extraction process. 
 

 

SHELL & FIBRE 

EMPTY BUNCH 

Fruit Digestion 

NUT & FIBRE Pulp Pressing Nut Recovery 

Oil Clarification Nut Polishing 

Nut CrackingOil Purifying 

Kernel Separation 
Oil Drying 

Kernel Storage Oil Storage 
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Fresh fruit bunches are steam sterilized at around 140oC for a period of 75 to 

90 minutes.  The sterilizing or steaming of the fruits are to facilitate separation and 

threshing of bunches to free the palm fruit.  However, the main objectives are to 

deactivate hydrolytic enzymes responsible for the breakdown of oil to free fatty acid, 

to coagulate and facilitate the breaking of oil cells.  In the bunch threshing step, the 

fruits are stripped and separated from fruit bunches in a rotary drum.  Fruits are 

knocked out of the bunch as they passed through the stripper.  The detached fruits 

are collected and conveyed into the digester (Mustapa, 2004).   

 

 Digestion involves the meshing up of the fruits under steam-heated 

conditions and pressing out the crude palm oil.  Generally, twin-screw press is used 

to press out the oil from the digested mesh.  The crude oil is further purified and 

dried for storage.  The solid wastes from the milling operations are empty fruit 

bunches, palm fibre, and palm kernel shell.  The residue from the press consists of a 

mixture of fibre and palm nuts which were then processed to produce palm kernel.  

Normally, the extraction rates of fresh fruit bunch are dependent on the size and 

weight of fruits. Fruits weighing more than 20 kilograms would typically an 

extraction rate of between 19–21%, whereas fruits weighing is less than 10 

kilograms, typically will have oil extraction rate of about 15–16% (Mustapa, 2004).  

 

The best quality crude palm oil quality must have FFA percentage of less 

than 5% whereas the moisture content is less than 0.1% and the percentage of dirt is 

not more than 0.01%. The highly rated commercial oil palm fruit is type Tenera, a 

hybrid of Durra and Pisifera (Baryeh, 2001 and Sundram et al., 2003).  Tenera has a 

shell of less than 3mm thick 60-96 % mesocarp, 3-20% shell and 3-15% kernel 

making it tenable to high extraction yield. 
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1.2.2 Carotenoids in Palm Oil  

 

 

One of the uniqueness of palm oil is, its high content of carotenoids.  Typical 

crude palm oil contains 500-700ppm of carotenes.  Together with tocopherols, 

carotenoids contribute to the stability and nutritional value of palm oil.  Therefore, 

the extraction and recovery of the carotenes would give a significant added value to 

the oil.  Unfortunely, these valuable carotenes are destroyed and removed during 

conventional palm oil refining to give a light coloured oils as required consumers, 

rendering them unavailable for recovery and use (Ooi  et al., 1996 and Gast et al., 

2001).   

 

Besides, the conventional processing of palm oil also leaves high content of 

carotenoids in pressed palm fibers.  The pressed palm fibers found are a good source 

of carotene. The residual palm fibers from palm oil production contain between 4000 

and 6000 ppm of carotenoids, six times higher than that found in crude palm oil 

(Franca and Meireless, 1997).  Until now, the residue is a waste product which is 

typically burned in palm oil mills, regardless of the high carotenoid contents. 

(Birtigh et al., 1995 and Franca and Meireless, 1997).  

 

A number of methods have been developed to recover and extract 

carotenoids from crude palm oil including solvent extraction, adsorption, 

precipitation and transesterification-distillation. However, to-date, only 

transesterification-distillation and transesterification-solvent extraction have been 

scaled-up to industrial practise.  These methods are energy-intensive processes since 

the esters must be vacuum-distilled and the carotenes may undergo thermal 

degradation.  As an alternative SFE technology was introduced more than 20 years 

ago to take advantage of the lower operating temperature preventing degradation of 

carotene during extraction.  The SFE method has wide attention due its advantages 

over traditional processing technology. 
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1.3 Supercritical Fluid Extraction (SFE) Technology 

 

 

Supercritical fluid extraction (SFE) is a powerful technique in a separation 

process which uses a supercritical fluid (SCF) as a solvent.  The behaviour of 

supercritical fluids observation was first observed and reported by Baron Cagniard 

de la Tour in 1822. From his early experiments, the critical point of a substance was 

first discovered. However, the first workers to demonstrate the solvating power of 

supercritical fluids for solids were Hannay and Hogarth in 1879.  They found that 

increasing the pressure caused the solutes to dissolve and that decreasing the 

pressure caused the dissolved materials to precipitate as a “snow”. This behaviour is 

fundamental to the understanding of the supercritical fluids extraction (SFE) 

technology (Taylor, 1996).    

 

A pure component is said to be in supercritical state when its temperature and 

pressure are higher than the critical values (Tc and Pc, respectively).  The fluid 

above the Tc and Pc cannot be liquefied regardless of the applied pressure.  It has 

desirable properties that make it suitable for challenging an extraction process i.e. 

changes with a slight variation in pressure and temperatures near the critical point.   

The fluid exhibits high density similar to liquids, and low viscosity similar to gases.  

The high densities of SCFs contribute to greater solubilization of compounds while 

low viscosity enables penetration in solids and allows flow with less friction.  On the 

other hand, surface tension and heat of vaporization is relatively very low for SCFs 

(De Castro, 1994).   
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1.4 Advantages of SFE technology 

 

 

 The applications of SFE technology have developed as a faster and less 

solvent-intensive alternative to traditional extraction schemes as a result of the 

critical fluids having more promising properties over conventional solvent.  

Supercritical fluid extraction (SFE) methods involves a few steps, thereby leading to 

short analysis time and reduced sample transfer, and hence smaller analytical errors.  

In addition, by using SFE technology, the recovery of analytes is precisely and 

reliability compared to conventional method i.e. Soxhlet extraction as isolation of the 

analytes is completes.  This is due to the solvent power, polarity and temperature of 

SCF that play role as primary factor to a success extraction process.  The crude oils 

obtained from SFE method are easily be refined compared to conventional method 

since the SFE extracts contain fewer impurities (De Castro, 1994).  Throughout the 

SFE process technology, the raw materials and extracts are not subjected to elevated 

temperatures, thereby minimising the risk of product thermal degradation.  In 

addition, by supercritical fluid extraction technology the operating condition can be 

operated under a wide range to extract selectively the any active compound or to 

produce with improved functional or nutritional characteristics.   

 

SFE technology is cleaner and less hazardous than conventional extraction 

since 90% of the technology applications developed so far use CO2 as a solvent, 

which is non-toxic and inflammable properties.  Unlike liquid solvents (n-hexane, 

ether, methylene chloride), supercritical CO2 poses no fire risk and leaves no 

environmentally hazardous wastes.  The properties of gas-like diffusivity and 

viscosity, zero surface tension, and liquid-like density combined with the pressure-

dependent solvent power of a supercritical fluid have provided the stimulation for 

applying supercritical fluid (SCF) technology to a range of separations problems 

experienced in many segments of industry (Taylor, 1996).   
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1.5 Problem Background  
 

 

 Currently, SFE applications have been very limited, and are focused on the 

use of CO2 as a supercritical solvent as alternative to conventional separation, i.e. 

Soxhlet extraction.  In fact, supercritical CO2 has been accepted as a common and 

standard supercritical solvent and is the most popular and typically employed as a 

solvent for most supercritical extraction applications.  Even though SFE technology 

has been established and known during the past 30 years, however, 

commercialization of the technology is still limited (Rizvi et al., 1986).  There are 

only a few industrial SFE applications that have been reported such as for 

decaffeination of coffee and tea and extraction of hops for brewing (Rizvi et al., 

1986 and Ooi et al., 1996).  

 

This limitation may be attributed to the high capital investment associated 

with plant start-up and intense operation due the higher pressure of up to 500 bar 

required by using carbon dioxide as a solvent to allow satisfactory extraction or 

fractionation process (Rizvi et al., 1986).  The high-pressure operation can 

contribute to the high capital cost and operating cost to maintain the high pressure.  

This is one of the factors that have contributed to the limited the commercialisation 

of SFE process using CO2.   

 

Some attempts have been made to use carbon dioxide at low pressure ranging 

from 40-100 bar.  However, it was found that the solubility of the compound of 

interest in CO2 is rather low (Maxwell, 1996, Catchpole and Von Kamp, 1997 and 

Catchpole et al., 1998).  Previously, Stahl et al. (1980) had studied the extraction of 

seed oils by liquid CO2, found that the inferior mass transport properties and solute 

fluxes caused the approach for oilseed processing inadequate.  In addition, King and 

Bott (1993) has noted that there is no economic incentive in the near-critical CO2 

process.  

 

The discovery of a new or alternative low-pressure solvent having the same 

advantages as that of CO2 is therefore necessary in order to capitalise on the 

superiority of SFE technology over traditional technique. Subcritical R134a is 
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suggested as a low-pressure alternative (Catchpole and Proells, 2001 and Wood et 

al., 2002) to supercritical CO2  since it has been found to have comparable solvent 

properties to CO2 (Lagalante et al., 1998) in addition to being able to extract analytes 

at low temperature and pressure (Hansen et al., 2000 and Simões and Catchpole, 

2001).   

 

In addition, numerous SFE applications have focused on the extraction of 

vegetables and seeds such as soybean (Lee et al., 1991), canola (Fattori et al., 1988 

and Temelli, 1992), Buriti (Franca et al., 1999), sunflower (Krimiti et al., 2001 and 

Salgın et al., 2005), and palm kernel (Hassan et al., 2000) using SC-CO2 to recover 

valuable minor components such as tocopherols and β-carotene.  The extraction of 

palm oil using SFE technology is envisioned to have a great outlook (Bharat, 2003).  

However, extraction of palm oil from its fruits using SC-CO2 has been found to be 

relatively rare as compared to the application of SFE on other vegetable oils 

(Bisunadan, 1993 and Lau et al., 2006).  Until today, there has been no reported 

study on the use of R134a as an alternative to CO2 solvent for the supercritical 

extraction and recovery of palm oil and its valuable minor components.   

 

 

 

 

1. 6 Problem Statement 
 

 

Until today, the commercialization of SFE technology has been rather 

limited.  High operation cost associated with high operating pressure needed by CO2 

as a solvent is one of the key factors that limit the commercialisation of SFE 

technology (Rizvi et al., 1986, Catchpole and Proells, 2001, and Simões and 

Catchpole, 2002).  It is envisioned that the discovery of an alternative solvent that 

allows operations at significantly lower pressure relative to those required using CO2 

solvent can overcome the practical limitations towards commercialisation.  For the 

solvent to be viable, it should enable the process to achieve comparable or better 

performance in terms of maximising oil yields while maintaining the quality and 

stability of the oil through elimination of undesirable compounds.  In achieving 
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economical and cleaner process, it is envisioned that R134a has a promising 

potential to replace CO2 for the extraction of crude palm oil based on SFE 

technology.   

 

 

 

 

1.7 Research Objectives 

 

 

The aims of this research are: 

a) To investigate the capability of R134a as an alternative to CO2 solvent by 

determining yields and solubility of palm oil in sub-critical R134a solvent at 

various pressure and temperature using SFE technology.   

b) To investigate the potential of R134a to recover the valuable minor 

components by measuring the concentration of extracted β-carotene. 

 

 

 

 

1.8 Scope of Work 
 

 

In order to explore the viability of using R134a as a new solvent, it is 

essential to establish fundamental data such as solubility.  Palm oil extraction from 

its oil palm fleshy mesocarp was performed to investigate the capability of sub-

critical R134a as alternative low-pressure solvent to CO2 by determining the yields 

and solubility of palm oil in sub-critical R134a.  The potential of R134a solvent to 

recover the valuable minor component was also investigated by measuring the 

concentration of β-carotene extracted.  The tasks to be accomplished to achieve the 

objectives of this study include:  

  

• Experiments to determine palm oil solubility in sub-critical R134a at selected 

range of conditions.  



 
 

12

 
• Investigation of the effects of process parameter (temperature, pressure, 

flowrate) and effects of sample pre-treatment on the yields and solubility of 

palm oil and analysis of composition of fatty acids and concentration of β-

carotene using Gas Chromatography (GC) and UV-Vis Spectrophotometer 

respectively.  

• Correlation of the solubility behavior with a density-based model and T-P 

model.  

• Prediction of Response Surface Model for extraction yield including effects 

of pressure and temperature.  

 

 

 

 

1.9 Research Contributions 

 

 

Three key contributions that have emerged from this work are: 

 

• Equilibrium solubility data for palm oil in sub-critical R134a. To-date, there has 

been no reported findings on the solubility of palm oil in R134a.  Therefore, the 

solubility data presented in this thesis is a pioneering work in the development of 

solubility database in SFE field.  

• An empirical model on the solubility behaviour of sub-critical R134a provides a 

significant impetus for future SFE measurement and predictions studies.  

• A detailed experimental procedure on the use of sub-critical R134a as an 

alternative solvent to supercritical CO2.  The experiments conducted in this work 

will be a breakthrough step to chart the path towards the development of an 

economical alternative new process for the crude palm oil production and for the 

recovery of valuable minor components (such as carotenes and tocopherols) in 

palm oil based on the principle of SFE principles.  
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1.10 Thesis Outline 

 

 

This thesis is organised in 6 chapters.  Chapter 1 begins with the introduction 

of the research project i.e. preface on SFE technology related to vegetables oils and 

fats application.  The chapter also include the problem background which had 

motivated this research, the research objectives and scope of work and the key 

contributions of this work.   

 

Chapter 2 describes the fundamental theory as well as the physical and 

chemical properties of palm oil and its minor-components.  This chapter also 

presents an overview of the thermodynamic properties of R134a as well as the most 

common SFE solvents.  These properties are useful for solvent selection.  The 

fundamentals of SFE process and sub-critical conditions are also presented in the 

chapter.  This includes specifications on the parameters influence an extraction 

process and solubility.   

 

Chapter 3 provides a critical review of the previous works on solubility, SFE 

applications to vegetables and seeds oils by means of CO2 with R134a as a solvent.  

Theory and literature on Response Surface Design for statistical model and 

mathematical modeling on the solubility behaviour are also included in this chapter 

 

Chapter 4 presents the experimental work procedure for the extraction 

process.  The procedure begins with selection of operating conditions, sample pre-

treatment and extraction methodology.  It also describes the procedure for analysis of 

extracted oil sample for compounds such as fatty acids and carotene using Gas 

Chromatography (GC) and UV-Vis Spectrophotometer, respectively.   

 

The results discussed in Chapter 5 are divided into two parts.  The 

experimental study results are discussed in the first part.  These include discussions 

on the effects of various process parameters on the oil extraction yield as well as 

solubility; and discussions on the effects of process parameters on the compositions 

of fatty acids and carotene.  In the second part, empirical modeling that describe the 



 
 
 

14

oil yields and solubility characteristics as well as the mathematical models on 

solubility behaviour based on solvent density are discussed and proposed.   

 

Finally, Chapter 6 presents a summary of the study and the recommendations 

for future work.  Some suggestions are made to guide and improve future 

experimental work in terms of the use of sub-critical R134a as a solvent.   




