MODELING AND PERFORMANCE ANALYSIS OF THE OFDM SCHEME FOR RADIO OVER FIBER SYSTEM

FERDIAN YUNAZAR

UNIVERSITI TEKNOLOGI MALAYSIA

MODELING AND PERFORMANCE ANALYSIS OF THE OFDM SCHEME FOR RADIO OVER FIBER SYSTEM

FERDIAN YUNAZAR

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical – Electronics and Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2009

ABSTRACT

Radio over fiber (ROF) is an hybrid system that having both a fiber optic link and free-space radio path. In such RoF systems using, broadband microwave data signals are modulated onto an optical carrier at a central station, and then transported to remote sites or base station using optical fiber. The base-stations then transmit the RF signals over small areas using microwave antennas. Such system is important in a number of applications, including mobile and satellite communications, wireless local area networks (WLANs), wireless local loop and mobile broadband service, etc. Orthogonal Frequency Division Multiplexing (OFDM) technique distributes the data over a large number of carriers that are spaced apart at precise frequencies with overlapping bands. The use of FFT for modulation provides orthogonality to the subcarriers, which prevents the demodulators from seeing frequencies other than their own. Hence by incorporating OFDM along with the optical fiber, the RoF system can be used for both short distance as well as long-haul transmission at very high data rate. This improves the system flexibility and provides a very large coverage area without increasing the cost and complexity of the system very much. In this project author investigates the feasibility of OFDM as modulation technique for a RoF based on WLAN system in consistency with IEEE 802.11g. Result from Optisystem model shows the performance of OFDM signal through the RoF networks. The system was utilized to carry data rates 20Mbps, using carrier frequency 2.4 GHz and the modulation type for OFDM is 16QAM 4 bit per symbol. Total power of the signal was decreasing while the fiber length of the RoF networks was increased from 10 -50 km.

ABSTRAK

Radio over Fiber (RoF) adalah suatu sistem hibrida yang mempunyai dua jalur transmisi, serat optik dan jalur bebas radio. Dalam penggunaan sistem RoF, gelombang mikro pita lebar sinyal data dimodulasikan pada pembawa optikal di pemancar utama dan kemudian dikirimkan ke tempat yang berjauhan atau ke pangkalan pemancar lainnya dengan menggunakan serat optik. Pangkalan pemancar kemudian mentransmisikan sinyal RF untuk area yang lebih kecil dengan menggunakan antena gelombang mikro. Sistem yang seperti ini sangatlah penting dalam banyak aplikasi, termasuk komunikasi bergerak dan satelit, WLANs, dan layanan pita lebar bergerak lainnya. Teknik modulasi OFDM mendistribusikan data melalui banyak pembawa yang dipisahkan dengan frekuensi yang akurat dengan pita yang saling berdekatan. Penggunaan FFT pada modulasi memberikan orthogonality untuk setiap pembawa, yang dapat menghindarkan demodulator dalam membaca frekuensi yang bukan miliknya. Kerana itu menggabungkan OFDM dengan serat optik, sistem RoF dapat digunakan untuk transmisi jarak dekat maupun jauh dengan kelajuan data yang tinggi. Ini meningkatkan kemudahan suai dan menyediakan cakupan wilayah yang lebih besar tanpa menyebabkan kenaikan dalam biaya dan kesukaran pada sistem. Dalam projek ini penulis meniliti kemungkinan modulasi OFDM untuk RoF berdasarkan sistem WLAN IEEE 802.11g. Hasil yang didapat dari model Optisystem, memperlihatkan performa sinyal OFDM melalui jaringan RoF. Sistem ini dibuat untuk dapat membawa data 20 Mbps, menggunakan frekuensi pembawa 2.4 GHz dan tipe modulasi untuk OFDM ialah 16QAM 4 bit untuk setiap simbol. Total power yang dihasilkan oleh sinyal OFDM tersebut menurun seiring dengan ditambahkannya panjang pada serat optik dalam jaringan RoF dari 10 hingga 50 Km.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	V
	ACKNOWLEDGEMENTS	vi
	ABSTRACT	vii
	ABSTRAK	viii
	TABLE OF CONTENTS	ix
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF ABBREVIATIONS	XV
	LIST OF SYMBOLS	xvii
1	INTRODUCTION	1
	1.1 Project Background	1
	1.2 Problem Statement	4
	1.3 Objective	5
	1.4 Scope of Work	5
	1.5 Methodology	6
	1.6 Thesis Outline	7
2	LITERATURE REVIEW	9
	2.1 Introduction	9
	2.2 Radio over Fiber (RoF)	10
	2.2.1 Overview	10

2.2.2 Benefits of RoF Technology	12
2.2.3 Architecture of RoF Networks	13
2.3 Optical Transmission Link	15
2.3.1 Optical Fiber	15
2.3.1.1 Step Index Fiber	16
2.3.1.2 Graded Index Fiber	19
2.3.2 Optical Source (Laser)	20
2.3.3 Optical Modulation	21
2.3.4 Electro-Optic Modulation System	21
2.3.5 Electro-Optic Mach Zehnder Modulator	22
2.3.6 Optical Receiver (Photodetectors)	24
2.3.7 Optical Amplifier	24
2.4 Applications of Radio over Fiber Technology	26
2.4.1 Wireless LANs	26
2.4.2 Cellular Networks	27
2.4.3 Satellite Communications	27
2.4.2 Mobile Broadband Services	28
2.5 Conclusion	29
OFDM FOR RoF COMMUNICATIONS	30
3.1. Introduction	30
3.2. Orthogonal Frequency Division Multiplexing	
(OFDM)	31
3.3. General Principles	33
3.3.1 Multicarrier Transmission	33
3.3.2 Fast Fourier Transform	37
3.3.3 Guard Interval and Implementation	38
3.4. Coded OFDM	39
3.4.1 Coded OFDM Systems	39
3.4.2 Trellis Coded Modulation	41
3.4.3 Bit Interleaved Coded OFDM	43
3.5. Advantages of OFDM	46
3.6. Disadvantages of OFDM	46
3.7. OFDM System for Radio over Fiber	47

3

	3.8 Conclusion	48
4	THE OFDM ROF SYSTEM MODEL	49
	4.1. Introduction	49
	4.2. The OFDM System Model	50
	4.3. The Transmitter Model	51
	4.4. The Transmission Link Model	53
	4.5. The Receiver Model	55
	4.6. Conclusion	56
5	SIMULATION RESULT AND PERFORMANCE	
	ANALYSIS	57
	5.1. Introduction	57
	5.2. The Transmitter Simulation Results	58
	5.3. The Transmission Link Simulation Results	60
	5.4. The Receiver Simulation Results	62
	5.5. The Eye Diagram	64
	5.6. Analysis of The Total Power to Length of Fiber	67
	5.7. Conclusion	69
6	CONCLUSIONS AND RECOMMENDATION	70
	6.1 Conclusions	70
	6.2 Future Recommendations	71
RE	FERENCES	72

xi

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Typical Step-Index Fiber characteristic	
3.1	Data rates and modulation schemes for the 802.11 a	
	W-LAN system.	41
4.1	Global Parameter Setup	52
4.2	Sub carrier Allocation	53
4.3	Component's Values of transmission link	54

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	General RoF systems	1
1.2	Project Flow Chart	6
2.1	A 900MHz Radio over Fiber System	11
2.2	Transport schemes for Fiber/Wireless systems	13
2.3	IF to RF up-conversion at the base stations	14
2.4	Optical Transmission Link	15
2.5	Step-Index Fibers.	
	(a) Refractive index profile.	
	(b) End view.	
	(c) Cross-sectional side view.	17
2.6	Graded-Index Fiber.	
	(a) Refractive index profile.	
	(b) End view.	
	(c) Cross-sectional side view	19
2.7	Basic configuration of Optical modulator	23
2.8	Schematic diagram of a simple Doped Fiber Amplifier	24
3.1	(a) OFDM Symbol with Three Orthogonal Sub-	
	carriers in one.	
	(b) OFDM Symbol with Spectra of three OFDM sub-	
	carriers	32
3.2	A block diagram of an OFDM transmitter	34
3.3	Block diagram for multicarrier transmission (1)	36
3.4	Block diagram for multicarrier transmission (2)	36

3.5	Block Diagram IFFT/FFT	37
3.6	Guard Interval	38
3.7	(a) An example of 8-PSK modulation.	
	(b) An example of a trellis diagram for a coded	
	modulation scheme	42
3.8	A block diagram of Bit-interleaved coded OFDM	44
3.9	(a) Constellations of 16-QAM with Gray mapping.	
	(b) Constellations of 16-QAM with set partitioning	45
3.10	OFDM model for Radio Over Fiber Network	47
4.1	Block Diagram of OFDM – RoF network system	50
4.2	OFDM Transmitter Design	51
4.3	RoF System Model	54
4.4	OFDM Receiver Design	55
4.5	OFDM – RoF MoDem	56
5.1	OFDM signal from transmitter	58
5.2	OFDM signal after amplified	59
5.3	OFDM optically modulated by MZM	60
5.4	OFDM signal after through optical fiber	61
5.5	OFDM signal from PIN photodetector	62
5.6	OFDM signal after amplified	63
5.7	Basic information contained in Eye diagram	64
5.8	(a) Eye diagram of received OFDM signal for in phase	
	signal	
	(b) Eye diagram of received OFDM signal for in	
	quadrature signal	65
5.9	Total power signal vs Fiber length after photodetector	67
5 10	Total power signal vs Fiber length after electrical	
5.10	amplifier	68

LIST OF ABBREVIATIONS

XPM	-	Cross Phase Modulation
SPM	-	Simple-Phase Modulation
LD	-	Laser Diode
PD	-	Photo Detector
LED	-	Light Emitting Diode
APD	-	Avalanche Photodiode
SCM	-	Sub-carrier Multiplexing
WDM	-	Wavelength Division Multiplexing
SNR	-	Signal to Noise Ratio
CNR	-	Carrier to Noise Ratio
DWDM	-	Dense Wavelength Division Multiplexing
BW	-	Bandwidth
OSSB	-	Optical Single Side Band
ODSB	-	Optical Double Side Band
OTDM	-	Optical time Division Multiplexing
OCDM	-	Optical Code Division Multiplexing
EAM	-	Electro Absorption Modulator
SMF	-	Single Mode Fiber
MMF	-	Multi mode Fiber
GRIN	-	Graded Index
RF	-	Radio Frequency
MZM	-	Mach-Zehnder Modulator
CSNRZ	-	Carrier Suppressed Non return to Zero
EDFA	-	Erbium Doped Fiber Amplifier

RZ	-	Return to Zero
NRZ	-	Non return to Zero
PMD	-	Polarization Mode Dispersion
PRBS	-	Pseudo Random Bit Sequence
RoF	-	Radio over Fiber
CW	-	Continuous Wave
IMD	-	Inter modulation distortion
OFDM	-	Orthogonal Frequency Division Multiplexing
ASK	-	Amplitude Shift Keying
FSK	-	Frequency Shift Keying
PSK	-	Pahse Shift Keying
QAM	-	Quadrature Amplitude Modulation
BPSK	-	Binary Phase Shift Keying
QPSK	-	Quadrature Phase Shift Keying
OQPSK	-	Offset Quadrature Phase Shift Keying
OOK	-	On Off Keying
BER	-	Bit Error rate
MPSK	-	Minimum Phase Shift Keying
CATV	-	Cable television
TDM	-	Time division multiplexing
OCDMA	-	Optical Code Division Multiple Access
FTTx	-	Fiber To The Home, curb, etc.
MH	-	Mobile Home
SONET	-	Synchronous Optical Network
DFB	-	Distributed Feedback Laser
SDH	-	Synchronous Digital Hierarchy
MAN	-	Metropolitan Area Network
LAN	-	Local Area Network
BS	-	Base Station
MS	-	Mobile Station
CS	-	Central Station

LIST OF SYMBOLS

λ	-	Wavelength
h	-	Blank's Constant
С	-	Velocity of Light
Eg	-	Energy Gap
fc	-	Cut-off frequency
η	-	Quantum Efficiency
R	-	Responsivity
ip	-	Photocurrent
Ро	-	Optical Power
q	-	Electron Charge
Т	-	Temperature
Κ	-	Boltzmann Constant
В	-	Bandwidth
R	-	Nominally matched Resistance
Vth	-	The rms value for the thermal noise voltage
ΔP^2	-	Mean square amplitude of the noise fluctuations
α	-	Mie Scattering Coefficient
P(Z)	-	The laser Power at Z
P(I)	-	Output optical power
Ι	-	The current injected to the active region
V	-	Volume of the active region
Q	-	Photon Density

CHAPTER 1

INTRODUCTION

1.1 Project Background

Radio-over-fiber (RoF) is a technology used to distribute RF signals over analog optical links. In such RoF systems, broadband microwave data signals are modulated onto an optical carrier at a central station (CS), and then transported to remote sites or base station (BS) using optical fiber. The base-stations then transmit the RF signals over small areas using microwave antennas as shown below in Figure 1.1[1] [2].

Figure 1.1 General RoF systems

Such technology is expected to play an important role in present and future wireless networks since it provides an end user with a truly broadband access to the network while guaranteeing the increasing requirement for mobility.

ROF is very attractive technique for wireless access network infrastructure, because it can transmit microwaves and millimeter-waves through optical fibers for a long distance. Moreover, 5 GHz ROF link using a direct modulation scheme has been developed to support some important future wireless systems such as wireless local area networks (WLAN) intelligent transport systems (ITS), and the 4th generation cellular systems.

In particular, ROF is promising technique for WLAN infrastructures because ROF technique can manage WLAN modems at a base station (BS) and can solve serious interference problem between wireless signals caused by proliferated WLAN access points (APs).

Orthogonal Frequency Division Multiplexing (OFDM) technique distributes the data over a large number of carriers that are spaced apart at precise frequencies with overlapping bands. The use of FFT for modulation provides orthogonality to the sub-carriers, which prevents the demodulators from seeing frequencies other than their own. Hence OFDM has the best spectral efficiency, resiliency to RF interference, and lower multi-path distortion. LAN, which uses OFDM is the current trend for indoor wideband communication with a drawback of limited coverage area of few meters, but supports high data rate.

Hence by incorporating OFDM along with the optical fiber, the RoF system can be used for both short distance as well as long-haul transmission at very high data rate. This improves the system flexibility and provides a very large coverage area without increasing the cost and complexity of the system very much. Recently, it has been proved that OFDM is better compared to the conventional single carrier modulation for long haul optical transmission.

There are so many previous research papers and works that have been done by several people recently in terms of using OFDM modulation technique or multicarrier transmission for sending and receiving data through Radio over Fiber Networks. For example **A. Marwanto and S. M. Idrus** in their paper which titled *SCM/WDM Radio over Fiber for Broadband Communication*, the author shown the study about multiplexing carrier used for Radio Over Fiber Network Technology, and their result that the outcomes of bandwidth was increased to 60 GHz by applying of 16 Channel of SCM combined with WDM in optical fiber link. Another paper from **Guruprakash Singh and Arokiaswami Alphones** which titled *OFDM Modulation Study for a Radio-over-Fiber System for Wireless LAN (IEEE 802.11,* they has made an analysis of theoretical performance for OFDM using different technique of digital modulation such as PSK, BPSK, QPSK and QAM. Their result shows that QAM provide better spectral efficiency and lower detection error probability.

Meanwhile **Dhivagar. B, Ganesh Madhan.M, and Xavier Fernando** in their paper works which titled *Analysis of OFDM signal Through Optical Fiber for Radio over Fiber Transmission* has investigate the impact of fiber dispersion on the transmission performance of OFDM based IEEE 802.11.g, WLAN signal for different distances. The results show that using different fiber length it is clear that significant coverage extension is possible with very minimum penalty. And another work from **I. A. Kostko, M. E. Mousa Pasandi, M. M. Sisto, S. Larochelle, L. A. Rusch, and D. V. Plant** which titled *A radio-over-fiber link for OFDM transmission without RF amplification*. Their work is to increase OFDM signal transmission quality over the optically amplified link by joint optimization of the PD impedance matching and MZM bias. Their result show that the amplification can be moved from electrical to optical, which allows having an optical amplifier at the central office and simplifying the base station. Based on those previous papers and studies, there are so many researches and works in the field of using multicarrier transmission technique especially OFDM to transmitted and received data through optical link in Radio over Fiber Networks.

Meanwhile in this project author working on modeling and analyze the performance of the OFDM scheme for Radio over Fiber system to utilized applications based on WLAN IEEE 802.11 b/g standard (2.4 GHz). The project model has simulated by using commercial software, Optisystem 7.0.

1.2 Problem Statement

A key initiative in the deployment of new wireless services is to cost effectively extends and enhance the network's radio coverage. In the case of further wireless communication system significant effort is done to reduce the multipath fading and small base station matched to demands made by the bigger number of mobile cells and high frequency applications. To meet these requirements one of best solution is the combination of Orthogonal Frequency Division Multiplexing (OFDM) digital modulation and radio over fiber (ROF) technology.

The integration of both techniques emerged the possibility of cost-effective and high data rate ubiquitous wireless networks. OFDM is seen as the modulation technique for future broadband wireless communications because it provides increased robustness against frequency selective fading and narrowband interference, and is efficient in dealing with multipath delay spread [1]. While RoF is the next generation communications system that can utilize the high capacity of optical networks along with the mobility of wireless networks.

1.3 **Objectives**

The first objective of this project is to model and simulate the OFDM scheme for RoF using commercial software, Optisystem 7.0 from Optiwave. The second objective is to investigate and analyze the feasibility performance of OFDM for RoF in term of Eye diagram and the effect of total length with the fiber dispersion.

1.4 Scope of Work

The scopes of this project are:

- 1. Understanding the basic principle of OFDM modulation technique and RoF through literature study.
- 2. Modeling and simulation of OFDM signals through RoF network using commercial software, Optisystem 7.0 from Optiwave.
- The OFDM system is modeled for application based on WLAN IEEE 802.11 b/g standard (2.4 GHz).

1.5 Methodology

The methodology of this project is described in the following flow chart

Figure 1.2 Project Flow Chart

First the methodologies start with literature study and review on the RoF system and OFDM modulation technique. Then understood the modeling design of OFDM modulation technique for RoF system. After that followed by theoritical analysis of OFDM and RoF system. Main thing to analyze here is the basic concept of RoF system, OFDM modulation technique and incorporating OFDM along with RoF. Sooner after fully understand about the theoretical part, then starting to design and model the system and analyze characterization of the system modeled. The OFDM-RoF system was modeled and simulated using commercial software, which is Optisystem 7.0 from Optiwave.

Next is analyzing the result and system performance which is obtained from the simulation model. While analyzing the result, the system is being optimize to get a better performance and best simulation result. This would be done with referring to the theoretical and numerical analysis part again to double check whether some part is missing or some problem were occurring when understanding the theory.

Finally after all the simulation had been done and all the result derived, compare the result with previous work and theoretical analysis. Then finished writing also writes some publications.

1.6 Thesis Outline

These projects comprise of six chapters and organize as follows:

Chapter 1 is introductory part of this project which consists of the project background, problem statement, and objective, scope of work, followed by methodology and thesis outline.

Chapter 2 is literature review of this project which is explaining some basic theory of Radio over Fiber, with the benefits and architecture of RoF. Also explain the parts of optical transmission link and the applications of RoF technology.

Chapter 3 presents the Orthogonal Frequency Division Multiplexing (OFDM). Consist of introduction, general principles and coded OFDM and also discusses the advantages and disadvantages of OFDM.

REFERENCES

- A. Marwanto and S.M.Idrus, 'SCM/WDM Radio over Fiber for Broadband Communication', INCOMTIS2008, Semarang Indonesia, 14-15 May 2008
- [2] M. Arsat, S.M.Idrus and N.M.Nawawi, 'Performance Analysis of Sub Carrier Multiplexed System for Radio over Fiber Technology', Proceeding of National Conference on Telecommunication Technologies and Malaysia Conference on Photonics 2008 (NCTT-MCP 2008), 26-28 August 2008
- [3] A. Marwanto and S.M. Idrus, 'System Performance Analysis for 150km SCM/WDM Radio over Fiber', International Graduate Conference on Engineering and Science 2008 (IGSES2008), Johor Baharu, 23-24 December2008
- [4] Guruprakash Singh and Arokiaswami Alphones.," OFDM Modulation Study for a Radio-over-Fiber System for Wireless LAN (IEEE 802.11a)", *Proceedings of Fourth International Conference on Information, Communications & Signal Processing, ICICS- PCM 2003,* Singapore, pp 1460 – 1464
- [5] Dhivagar. B, Ganesh Madhan.M, and Xavier Fernando., "Analysis of OFDM signal Through Optical Fiber for Radio over Fiber Transmission", Madras Institute of Technology Campus, Anna University Chromepet, Chennai 600 044, INDIA

- [6] Zhang Bo, Lu Yinghua, Zhang Jinling, Yang Biao., "Nonlinear Effect of OFDM in Radio-over-Fiber transmission", Beijing University of Posts and Telecommunications. BeiJing, CHINA, 100876
- [7] Hamed Al Raweshidy and Shozo Komaki (eds)," Radio over fiber technologies for mobile communications networks", Artech House, London.(2002)
- [8] Van Nee, Richard, and Prasad, Ramjee. OFDM for Wireless Multimedia Communications. Boston: Artech House, 2000.
- [9] J. Lowery, L. Du, and J. Armstrong, "Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems," *in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest,* (Anaheim, CA, USA, 2006), Paper PDP39.
- [10] Shi, Q., "Error performance of OFDM-QAM in subscriber multiplexed fiberoptic transmission", *IEEE Photonics Technol. Lett.*, *1997*, *9*, *(6)*, pp. 845–847
- [11] I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express 4, 3767-3775 (2006).[11] H. Chettat, L. M. Simohamed, Y. Bouslimani and H. Hamam, "*RoF Networks: A Comprehensive Study*", IEEE journals, ISWPC 2008
- [12] Hiroyuki S., Tsutomu N.,Kuniaki U. and Susumu M." Radio-over-Fiber Transmission performance of OFDM Signal for Dual-Band WirelessLAN systems" International Topical Meeting on Microwave Photonics 10-12, Japan, September,2003.
- [13] P'eter Horv'ath, Istv'an Frigyes. Effects of the Nonlinearity of a Mach- Zehnder Modulator on OFDM Radio-over-Fiber Transmission. IEEE Communications Letters. Volume 9, Issue 10, Oct. 2005 Page(s):921 -923.

- [14] Sigit Puspito W.J., "Mengenal Teknologi Orthogonal Frequency Division Multiplexing (OFDM) pada Komunikasi Wireless", *Elektro Indonesia*, Nomor 24, Tahun V, Januari 1999
- [15] Charan Langton, "Orthogonal Frequency Division Multiplexing Tutorial", www.complextoreal.com, 2002
- [16] J.E. Mitchell, "Performance of OFDM at 5.8 GHz using radio over fibre link," *Electronics Letters, Vol. 40, No. 21, Oct. 2004*
- [17] A. Bahai and B.R. Saltzberg, Multicarrier Digital Communication: Theory and Applications of OFDM. Norwell, MA: Kluwer, 1999.
- [18] I. A. Kostko, M. E. Mousa Pasandi, M. M. Sisto, S. Larochelle, L. A. Rusch, and D. V. Plant. "A radio-over-fiber link for OFDM transmission without RF amplification". Department of Electrical and Computer Engineering, McGill University, Montreal and Centre d'optique, photonique et lasers (COPL), Laval University, Quebec, QC, Canada
- [19] H. Harada, K. Sato and M. Fujise. A Radio-on-Fiber Based Millimeter-Wave Road-Vehicle Communication System by a Code Division Multiplexing Radio Transmission Scheme. *IEEE Trans. Intelligent Transport. System*, vol. 2, no. 4, pp. 165.179, Dec. 2001.
- [20] U. Gliese, S. Norskow, and T. N. Nielsen. Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links. *IEEE Trans. Microwave Theory Tech.*, vol. 44, no. 10, pp. 1716.1724, Oct.1996.
- [21] Ramaswami R., Sivarajan K.N. Optical Networks A Practical Perspective. 2nd
 Edition. Morgan Kaufmann, San Francisco, CA, 2002.
- [22] Govind P. Agrawal. Fiber-optic Communication Systems. John Wiley & Sons, New York, 2nd edition, 1997.

- [23] H. Ogawa, D. Polifko, and S. Banba. Millimeter-wave fiber optics systems for personal radio communication. *IEEE Transactions on Microwave Theory and Techniques* 40(12), 2285–2293 (1992).
- [24] Hong Bong Kim and Adam Wolisz. A Radio over Fiber based Wireless Access Network Architecture for Rural Areas. In Proceeding of 14th IST Mobile & Wireless Communication Summit, Dresden, Germany, June 2005
- [25] X. N. Fernando and S. Z. Pinter. "Radio over Fiber for Broadband Wireless Access", Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada, 2005