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ABSTRACT This paper presents a learning algorithm
based on AdaBoost for solving two-class classification
problem. The concept of boosting is to combine several
weak learners to form a highly accurate strong classifier.
AdaBoost is fast and simple because it focuses on finding
weak learning algorithms that only need to be better than
random, instead of designing an algorithm that learns
deliberately over the entire space. We evaluated
algorithms using Breast Cancer Wisconsin dataset which
consists of 699 patterns with 9 attributes. It aims at
assisting medical practitioners in breast cancer diagnosis.
Thus the class output is the diagnosis prediction which is
either benign or malignant. For comparison, back
propagation neural network (BPNN) is developed and
implemented on the same database. Experimental results
show that AdaBoost is able to outperform BPNN under
same experimental condition.

1. INTRODUCTION

In machine learning, boosting is a general method that
can be applied on any learning algorithm to improve its
performance. The term "weak leaner" has always been
mentioned throughout the evolution of boosting-based
algorithms. Literally it refers to weak learning algorithms
that perform just slightly better than random guess.
Schapire R.E. (1990) showed that these so-called weak
learners can be efficiently combined or "boosted" to build
a strong accurate classifier. This boosting algorithm
applies weak learning algorithms multiple times to
instance space with different distribution, and finally
construct a strong hypothesis from numerous weak
hypotheses

Freund, Y. et aI, (1997) first introduced theoretically
the adaptive boosting (AdaBoost) method which
significantly reduces the error of any learning algorithm
that consistently generates classifiers with the condition
of that: "better than random guess". In AdaBoost
algorithms, distribution over instance space of training set
are adjusted adaptively to the errors of weak hypotheses.

This helps to move the weak learner towards the "harder"
part of classification space more efficiently.

Subsequently, Freund Y. et al (1996) tested AdaBoost
on 27 bench mark learning problems of UCI repository.
Experimental results showed that, on relatively simple
classifiers, improvement made by AdaBoost can be
dramatic, which is far better than "bagging". They
emphasized the two effects of boosting: 1) reduces the
bias of the weak learner by forcing them to concentrate
on different parts of instance space; 2) reduce variance of
the weak learner by averaging several hypotheses
generated from from different subsamples of training set.

Besides, AdaBoost is able to provide effective
learning algorithms and strong bounds of generalization
performance (Schapire et al, 1998). Using the simplest
weak learner in the previous experiment, Schapire R.E. et
al (1999) proposed confident-rated AdaBoost algorithms
for further improvement, including Real AdaBoost.

Since then, boosting-base methods have been widely
employed in various applications for the purpose of
classification or feature selection. One of the very
successful demonstrations by Viola & Jones (2001) had
contributed a significant impact on object detection in
computer vision. Besides, boosting-based methods had
also garnered attention of researchers to seek further
enhancement, such as Gentle AdaBoost (Friedman et aI,
2000), Modest AdaBoost (Vezhnevets A. & Vezhnevets V,
2005) and FloatBoost (S.Z. Li et aI, 2002). FloatBoost
incorporates backtrack mechanism of Floating Search
into boosting algorithms to disqualify poor weak learners
base on their performance in error rate.

In this paper, we investigated the AdaBoost
algorithms in terms of the learning and generalization
ability on the Wisconsin Breast Cancer Diagnosis
(WBDC) data set of the University of Wisconsin (W.H.
Wolberg et aI, 1990). We used Real AdaBoost and
Modest AdaBoost of GML AdaBoost Matlab Toolbox
(Vezhenevets A., 2005) which are based on decision tree.
We compared the results with back-propagation neural
network (BPNN)(Section 2.2).

This paper is organized as follows: Chapter 2
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Proposing Real AdaBoost, R.E. Schapire et a1. (1999)
replace at with

, for bE {-1,0,1} and Uj= Y/Jl.x'). This replacement is to
minimizing Zt as an approach of reducing training error.

Modest AdaBoost (Vezhnevets, V et aI, 2005) modify
afto

within one and zero, Ef E [0, 1]. The parameter Pfis used
for updating the weight vector. It based on the update rule
that can increase the probability of misclassified
examples to be focused by next hypothesis.

Schapire R.E. et a1. (1999) provided a generalized
analysis of AdaBoost. With the same inputs in section 2.1,
distribution is denoted as Db). Weight initialization is
done by: DIJ) = 11N

Fort= 1,2, ... , T:
1. Train weak learner using distribution Df•

2. Get weak hypothesis ht: X --+9i .
3. Choose at E 9i .
4. Update distribution:

, where .0 is a normalization factor which makes 0
'
+1

a distribution. After T boosting round, the final
hypothesis becomes:

(1)

2. ALGORITHMS

2. Call weak leaner, providing it with the
distribution l; get back a hypothesis hf: X --+

[1,01.
3. Calculate the error ofh f:

describes the boosting algorithms and BPNN. Chapter 3
reports experimental conditions and results. Conclusion is
made on chapter 4.

2.1 ADABOOST
The basic concept of boosting is that, multiple weak

learning algorithms are called sequentially on different
distribution of training sets. These weak learners are later
transformed into a strong classifier. Among all the weak
learners, weak learners which achieve less error are
granted more weights in forming the strong classifier.
Weak learners which performs badly are weighted lightly,
or even discarded if its error 2: 50% of accuracy. In
AdaBoost, during weak learners' selection, distributions
over the instance space are adjusted each time of boosting
round, regarding the errors returned by previous weak
learners. The re-weighting process aims at emphasizing
those data which are incorrectly classified by previous
weak learner. More importantly, it combines the weak
hypotheses by summing their probabilistic predictions.

y. Freund et a1. (1997) proposed the steps to
implement the algorithms. First, we obtain a sequenced of
N training examples in domain X (Xj ...x,v) which are
labeled as either "I" or "0" to represent positive and
negative samples, ()I. . .YN). Mathematically, we have
XjEX, J1Jo E {l,0}. Next, distribution over the training set
is used to initialize the weight vector: ~ = y,./) for j =

I, . .. ,N The following are the steps for training and
selections of weak learners; with t is the specifying
number of iterations:

Fort=I,2, ... , T
I. Set

(2)
(12)

The weak learners generated always hold the error

4. Calculate parameter Pf as a function of Et:

fJt=~
1-&/

5. Update the weights:

w+1 = wjJI-lhr(X,)- y,1
J J t

Output the final hypothesis

IiI:) (log ~)ht(x) ~ +I:llog ~t

otherwise

(3)

(4)

(5)

2.1.1 Weak Classifier
As described in introduction, weak classifier can be

any learning algorithm which can make prediction that is
slightly better than random guess. Classification and
Regression Tree (CART) (Breiman et aI, 1984) is one of
the most famous classification methods employed in
boosting methods. It is a tree graph, as shown in Fig. 1,
where the nodes represent the hypotheses made during
training and the branches are marked with "yes/no".
These branches represent the prediction of the hypotheses
in its upper node. The leaves which are represented with
square box in the figure are the decision trees final
classification output. The output decides which class is
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Table 1 Classification pattern of BPNN.

Table 2 Experiments setup for 5-fold cross validation.

Class

440
235

Total
88
47

Testing

01
10

NN output

352
188

Training

Benign
Malignant

Class
Benign

Malignant

~8°B X j >3
/ No

c::JNO/\YeS
BB

Fig. 1 Example of a CART

This dataset contains 699 patterns of which 458 are
Tablebenign samples and 241 are malignant samples,
Each of these patterns consists of nine measurements
taken from fine needle aspirates from a patient's breast
(W.H. Wolberg et aI, 1990), yielding 9 attributes: 1)
clump thickness, 2) uniformity of cell size, 3) uniformity

most probably the input belongs to, which is labeled as
Y=1 or Y=O. To classify a single sample, its
corresponding input values will be feed to the root of
decision tree (X2 in Fig 1), then further descend. The
hypotheses act like threshold to determine whether to
split further or make final decision.

One of the parameters of decision tree is the
maximum number of node splitting. When there is only a
single node splitting allowed, the decision tree is known
as "stump decision" which was employed by Schapire et
al (1996) as their simplest weak learner. In our
experiment, we used 1-3 node(s) splitting.

2.2 BACK-PROPAGATION NEURAL NETWORK
Neural networks-based methods have been widely

used in classification for its good learning and
generalization ability. A multi-layer neural network based
on back-propagation is used in this work. During training,
standard back-propagation algorithms is used to update
weights of neural network based on the errors computed
at each neuron's output (D.E. Rumelhart et a1., 1986).
The errors are regarded as the gaps between target and
network outputs.

In our BPNN architecture, we set 10 hidden layer
neurons and 2 output layer neurons. Features are
normalized within -1 and 1 by each vector respectively.
Learning rate and momentum rate are set at 0.1 and 0.9.
Table 1 shows the patterns we used to classify the
features into different classes. The activation function
used is hyperbolic tangent sigmoid transfer function
which is given by

of cell shape, 4) marginal adhesion, 5) single epithelial
cell size, 6) bare nuclei, 7) bland chromatin, 8) normal
nucleoli, and 9) mitoses. The measurements were graded
one to ten (1-10) at the time of sample collection, with
one being the closest to benign and ten the most
anaplastic. The class output includes 2 classes, benign
and malignant. We removed the sixteen instances with
missing values from the dataset, turning it into 683
instances

3.1 SMALL TRAINING SAMPLES
In this experiment, training set consists of only 30

benign samples and 30 malignant samples, summing up
to 60 training samples. It is small when compared with
other experiments which used around 300-400 training
samples. On the other hand, 283 samples (200 benign and
83 malignant samples) which do not stack with training
samples were selected for testing. For more reliable
comparison, we repeated our experiments for 12 times
with different ways of partitioning the training and testing
set.

Figure 2 shows accuracy rate of classification
methods based on AdaBoost and BPNN. Rl, R2 and R3
denote Real AdaBoost with I, 2 and 3 nodes splitting.
The same denotation applies to Modest AdaBoost with
MI, M2 and M3. Experimental results show that, BPNN
is outperformed by all AdaBoost methods. Ml and M2
are found to be the best performers which achieve an
average accuracy of 95.76%, followed by R2 (95.64%).
BPNN is outperformed by all AdaBoost methods,
archiving 88.90%. On the other hand, regarding the
results of R3 and M3, it is obvious that increasing
number of splitting nodes does not really improve the
recognition rate ofAdaBoost.

3.2 5-FOLD CROSS VALIDATIONS
For 5-fold cross validations, we used 440 benign

samples and 235 testing samples and separated them into
five partitions each. At each validation, four partitions
were used for training and one partition left for testing, as
depicted in Table 2. Classification performances are
shown in Figure 3. M3 achieves best performance with an
average accuracy of96.15%, followed by real R2 (96%),
Ml and M2 (both 95.85%). Compared with small training
samples experiments, BPNN had better performance in

(13)
2

0= fen) = -1
1+ e-2n

3. EXPERIMENT
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Fig. 3 Classification performance of Real AdaBoost,
Modest AdaBoost, and BPNN for 5-fold cross validations

5-fold cross validations. It achieves an accuracy of
93.63% when trained with larger samples.

Fig. 2 Classification performance of Real AdaBoost,
Modest AdaBoost, and BPNN for 283 testing samples
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In this paper, we investigated and evaluated Real
AdaBoost, Modest AdaBoost and BPNN using the
original Wisconsin Breast Cancer Diagnosis dataset.
Based on the feature provided by dataset, the algorithms
are trained and subsequently used to classify testing data.
In AdaBoost, decision tree is used as weak classifier, with
1-3 splitting nodes. From the experimental results, BPNN
is outperformed by all AdaBoost methods. Among the
best, Modest AdaBoost is slightly better than Real
AdaBoost.
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