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ABSTRACT

A finite element lattice Boltzmann scheme was
developed for the incompressible viscous fluid flow.
The work was based on the two-dimensional
nine-microvelocity lattice model (D2Q9). The
simulations of simple fluid flow problems were
carried out to validate the proposed approach. The
results are compared well with the analytical
solutions.

1. INTRODUCTION

Lattice Boltzmann (LB) simulation scheme was
first introduced in 1980’s by McNamara and Alder
(1993). Since its introduction, this numerical
scheme has been widely used in wide range of
engineering application especially in fluid
mechanics and heat transfer related fields. Many
researchers have demonstrated that the LB

scheme can also be applied in
magnetohydrodynamics (Breyiannis and
Valougeorgis, 2004), multiphase fluid flow

(Halliday and Care, 1996), turbulence (Jonas et al,
2006), flow in porous media (Chen and Doolen,
1998), microscale fluid flow (Lim et al., 2002) and
recently compressible fluid flow (Mason, 2002).

Historically, LB scheme evolved from its precursor,
the lattice gas automata method (Frisch et al.,
1986). In LGA, computational space in discretized
into square grids and Boolean digits were used to
describe the existence of fluid particles. The fluid
particles are allowed to travel on the links that
connected the grids and collide simultaneously if
two particles arrive at the same grid. Even with
these simplifications to mimic the behavior of
fluid flow at particle level, the LGA was
successfully simulated fluid flow up to certain
accuracy. However, the drawbacks of LGA were
uncovered when the researchers tried to relate
this scheme with macroscopic Navier-Stokes
equation. They discovered that the LGA was
suffered from lack of Gallilean invariants and

high statistical noise. With these drawbacks,
macroscopic equations cannot be correctly
recovered and huge computational cost is required
to simulate a vrelatively simple fluid flow
phenomena.

Lattice Boltzmann scheme evolved as the results
of the improvement of LGA method. A few
modifications have been made such as the
introduction of BGK collision (Bhatnagar et al.,
1954) model and distribution function to replace
Boolean representation. The square grids lattice
structure is still the main characteristic in LB
method. As in LGA, the time evolution in LB
scheme consists of two main steps; propagation,
where the distribution function shift to the new
grid point and collision, the distribution function
relax to equilibrium state according to Boltzmann
H-theorem (Cercignani, 1988). The lattice
structure determines the number of microvelocity
in LB scheme. Researchers frequently use
“DmQn” to describe the lattice model in their
works. Here “m” represents the space dimension
and “n” represents the number of microscopic
velocity (Qian et al., 1992). Among the numbers of
lattice models exist in the literature, D2Q9 is the
most famous lattice model due its simplicity and
effectiveness for complex geometry (Azwadi et al.,
2006).

In this research, our works focused on further
improvement of LB scheme in order to increase its
accuracy and efficiency for the simulation of blood
flow in capillary. In our approach, we combined
conventional numerical method, finite element
method with LB scheme. With this combination,
Langragian method in the original LB scheme is
transformed into Eulerian method. Even though
the unconditional stable of the Langrigian original
LB scheme is sacrificed, however, the introduction
of finite element scheme is believed to overcome
the restriction of uniform mesh which very crucial
in obtaining higher accuracy in predicting blood
flow behavior in capillary.

The rest of the paper is organized as follow. In the
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next section, the theory of two-dimensional of
lattice Boltzmann scheme is discussed. Some
simulation results of fluid flow with analytical
solutions that were published elsewhere are
repeated to demonstrate the capability of this
scheme. The combination of finite element with
lattice  Boltzmann 1s shown section 3.
Computational results of backward facing step
flow using the proposed mathematical modeling
are also shown in this section. Final section
contains the concluding remarks.

2. LATTICE BOLTZMANN SCHEME
The governing equation of two-dimensional LB
scheme is given by (Gladrow, 2000)

ot + clapex) = (£ - P o))

where fis the distribution function with velocity ¢
at position x and time t. t is the time relaxation.
The value of 1 controls the amount of distribution
function that relaxes to equilibrium state during
collision process and £49is the Maxwell-Boltzmann
equilibrium distribution function. Noted that the
BGK collision function is used to describe the
collision process in LB scheme.

In present research, D2Q9 lattice model is used.
This equivalent to nine links connected to every
grid points as shown in Fig. 1.
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Fig. 1 D2Q9 lattice model.

Once the number microvelocity is decided
(discretized in velocity space) for the distribution
function, the governing equation can be rewritten
as follow

Of/ot+ ci (af/om = (£ - f9)lr 2)

where 7 = 1 — 9. The discretized equilibrium
distribution function is expressed as

fea=pwill + 3(ciu)+4.5(ciu)?-1.5u?] (3)

withwi=4/9for1=1, wi=1/9 for1=2,3,4,5 and wi
=1/36 fori=6,7,8,9.

The local macroscopic variables such as density
and velocity can be obtained through moment
integration of distribution function as follow

p=Zf pu=Zciff (4)

The evolution of LB scheme consists of two steps.

The initial value of p and u are specified at each

grid points (x, y). Then the system evolves in the
following steps

1) The value of f#2 on each grid point is

calculated using Eq. 3 and the collision

process can be computed according to

left hand side of Eq. (1). The post

collision value of £ is henceforth
obtained.
ii) After the collision, propagation takes

place and the new value of £1is obtained.
The value of macroscopic at new time
step can be calculated using Eq. (4).
Then the collision and propagation
processes are repeated.

2.1 Code Validation

The lattice Boltzmann scheme introduced in
the proceeding section is used to simulate fluid
flow in two-dimensional channel. The bounce-back
boundary condition (Frisch et al., 1986) is applied
on the top and bottom walls while periodic
boundary condition at inlet and channel exit. The
well-known analytical solution for this case,
parabolic velocity profile, is compared with the
results obtained from LB simulation and shown in
Fig. 2.
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Fig. 2 Comparison of results between LB scheme
and analytical solution.

From the comparison of results shown in Fig. 2,
we can see that the LB scheme gives a very good
agreement with the analytical solution for this
case of fluid flow. This gives us confidence to apply
LB scheme for a more complex fluid flow behavior
such as blood flow in capillary.
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3. THE FINITE ELEMENT LATTICE BOLTZMANN
SCHEME

The choice of finite element was due to its
flexibility on dealing with complex geometry and
computational grids.

We start with the temporal discretisation of Eq.
(1) as follow

ofiot = (fr+l - fr)/At (5)

where fn = f(x, t?) denotes the distribution
function’s value at time t = t», At is the time
increment, and t~*! = to + At. In general we
assume that fris already known and is used as an
initial condition to advance the solution to time
level tn*l. Next, we introduce a relaxation
parameter 6 and write the solution fin the form

f=0f1+(1-0)f" (6)

The parameter 0 is usually specified within the
range 0 < 0 < 1 and is used to control the accuracy
and stability of the algorithm. In our case, 6 = 0 is
selected to avoid complexity of the algorithm.

We now apply the Galerkin finite element method
to Eq. (1). Suppose that the computational domain
is discretized into a collection of finite elements,
which are bilinear quadrilateral elements in the
present study. The Galerkin approximation to the
solution fin an element is given by

f=N£E& (7

where N is the shape function and Q is the spatial
domain.
By applying the Galerkin method, and
substituting Eqs. (6) and (7) into Eq. (1) one
obtains

Mt =M£r - Bf» — (At/t) M(£7 + feq) + boundary
®

where matrices M and B are defined as
M= [NNTdQ and B =/pMaNT/) a2 9)

where NT1is the transpose matrix.
The macroscopic equation can be obtained via
Chapmann-Enskog expansion of Eq. (1). Details of
the derivation can be seen from Azwadi et al.
(2007) and will not be shown here

Veu=0 10

oWt + uVeu= (Vp)jp+ 1 V2w3 1)
By comparing Eq. (11) with the Navier-Stokes

equation derived from Newton’s second law, the
time relaxation t in microscopic equation can be

related to viscosity v in macroscopic equation as
follow

7=3v (12)

3. SIMULATION RESULTS

Numerical simulation for expansion channel flow
was carried out to test the validity of the proposed
approach. Fig. 3 shows a sketch of the geometry of
the flow problem used in the present study.
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Fig. 3 Sketch of expansion channel flow.

The expansion ratio is defined by H/A where H is
the channel height downstream of the step and A
is the channel height of the inflow channel. The
Reynolds number in this study is defined as

Re = UD/v (13
as in Armaly et al. (1983), where U is two-thirds of
the maximum inlet velocity, which corresponds in
the laminar case to the average inlet velocity, D is
the hydraulic diameter of the inlet channel and is
equivalent to twice its height D = 2h. At the outlet
of the computational domain, the flow should be
fully developed again. Hence the application of
simple outflow conditions assuming zero gradients
of all flow variables is typically sufficient.

Fig. 4 Streamline plot for expansion flow at Re =
100.

Fig. 4 shows streamline of steady state flow field
for an expansion ratio 2.0 at Re = 100. As can be
seen from the figure, the primary vortex was
successfully simulated and this demonstrates the
capability of the proposed numerical scheme.

CONCLUSION

This paper has demonstrated that the lattice
Boltzmann simulation scheme can be an
alternative approach in solving fluid flow
problems. One of the major drawbacks in original
lattice Boltzmann scheme, the restriction to
uniform grid can be avoided by coupling lattice
Boltzmann scheme with conventional numerical
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method. Our initial study on the finite element
lattice Boltzmann simulation scheme have shown
that this approach is a reliable and accurate
approach in modeling fluid flow problem. The
application to more complex fluid flow, blood flow
in capillary will be our next future research.
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