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ABSTRACT 
 
 
 
 

Count data is very common in various fields such as in biomedical science, 

public health and marketing. Poisson regression is widely used to analyze count data. It 

is also appropriate for analyzing rate data. Poisson regression is a part of class of models 

in generalized linear models (GLM). It uses natural log as the link function and models 

the expected value of response variable. The natural log in the model ensures that the 

predicted values of response variable will never be negative. The response variable in 

Poisson regression is assumed to follow Poisson distribution. One requirement of the 

Poisson distribution is that the mean equals the variance. In real-life application, 

however, count data often exhibits overdispersion. Overdipersion occurs when the 

variance is significantly larger than the mean. When this happens, the data is said to be 

overdispersed. Overdispersion can cause underestimation of standard errors which 

consequently leads to wrong inference. Besides that, test of significance result may also 

be overstated. Overdispersion can be handled by using quasi-likelihood method as well 

as negative binomial regression. The simulation study has been done to see the 

performance of Poisson regression and negative binomial regression in analyzing data 

that has no overdispersion as well as data that has overdispersion. The results show that 

Poisson regression is most appropriate for data that has no overdispersion while negative 

binomial regression is most appropriate for data that has overdispersion. 
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ABSTRAK 

 
 
 
 

Data bilangan adalah sangat lazim dalam pelbagai bidang, contohnya bidang 

sains bioperubatan, kesihatan awam dan bidang pemasaran. Regresi Poisson digunakan 

secara meluas untuk menganalisis data bilangan. Regresi Poisson juga sesuai untuk 

menganalisis data kadaran. Regresi Poisson merupakan sebahagian daripada model kelas 

model linear teritlak. Regresi ini menggunakan logaritma asli sebagai fungsi hubungan. 

Regresi ini memodelkan nilai jangkaan bagi pembolehubah maklum balas. Logaritma 

asli digunakan untuk memastikan supaya nilai ramalan bagi pembolehubah maklumbalas 

tidak akan berbentuk negatif. Pembolehubah maklumbalas dalam regresi Poisson 

dianggap mengikut taburan Poisson. Salah satu ciri taburan Poisson ialah nilai min 

pembolehubah adalah sama dengan nilai varians. Walaubagaimanapun, dalam aplikasi 

sebenar, data bilangan sering mempamerkan masalah lebih serakan. Masalah lebih 

serakan terjadi apabila nilai varians melebihi nilai min. Apabila ini terjadi, sesebuah data 

itu dikatakan terlebih serak. Masalah lebih serakan boleh menyebabkan kurang anggaran 

terhadap sisihan piawai yang kemudiannya memberi inferens yang salah. Selain 

daripada itu, keputusan ujian signifikan pula akan terlebih anggar. Masalah lebih serakan 

boleh diatasi dengan menggunakan kaedah kebolehjadian quasi dan juga regresi 

binomial negatif. Kajian simulasi telah dibuat untuk melihat keputusan regresi Poisson 

dan regresi binomial negatif dalam menganalisis data yang tidak mempunyai masalah 

lebih serakan dan juga data yang mempunyai masalah lebih serakan. Keputusan 

menunjukkan bahawa regresi Poisson adalah paling sesuai untuk data yang tidak 

mempunyai masalah lebih serakan manakala regresi binomial negatif adalah paling 

sesuai untuk data yang mempunyai masalah lebih serakan.  
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1  Count Data 
 
 

An event count refers to the number of times an event occurs, for example the 

number of individuals arriving at a serving station (e.g.: bank teller, gas station, cash 

register, etc.) within a fixed interval, the number of failures of electronic components per 

unit of time, the number of homicides per year, or the number of patents applied for and 

received. In many fields such as in social, behavioral and biomedical sciences, as well as 

in public health, marketing, education, biological and agricultural sciences and industrial 

quality control, the response variable of interest is often measured as a nonnegative 

integer or count. 

 
 

Significant early developments in count models, however, took place in actuarial 

science, biostatistics, and demography. In recent years these models have also been used 

extensively in economics, political science, and sociology. The special features of data 

in their respective fields of application have fueled developments that have enlarged the 

scope of these models. An important milestone in the development of count data 

regression model was the emergence of the generalized linear models, of which the 

Poisson regression is a special case.   
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In another case, an event may be thought of as the realization of a point process 

governed by some specified rate of occurrence of the event. The number of events may 

be characterized as the total number of such realizations over some unit of time. The 

dual of the event count is the inter-arrival time, defined as the length of the period 

between events. Count data regression is useful in studying the occurrence rate per unit 

of time. 

 
 
The approach taken to the analysis of count data sometimes depends on how the 

counts are assumed to arise. Count data can arise from two common ways: 

i) Counts arise from a direct observation of a point process. 

ii)  Counts arise from discretization of continuous latent data. 

 
 
In the first case, examples are the number of telephone calls arriving at central 

telephone exchange, the number of monthly absences at workplace, the number of 

airline accidents, the number of hospital admissions, and so forth. The data may also 

consist of inter-arrival times for events.  

 
 
In the second case, consider the following example. Credit rating of agencies 

may be stated as AAA, AAB, AA, A, BBB, B, and so forth, where AAA indicates the 

greatest credit. Suppose one codes these as my ,...,1,0= . These are pseudocounts that 

can be analyzed using a count regression. But one may also regard this as an ordinal 

ranking that can be modeled using a suitable latent variable model such as ordered 

probit. 

 
 
Typically, the characteristic of count data is that the counts occur over some 

fixed area or observation period and that the things that people count are often rare. 

Count data, even though numeric, can create some problems if it is analyzed using the 

regular linear regression because of the limited range of most of the values and because 

only nonnegative integer values can occur. Thus, count data can potentially result in a 

highly skewed distribution, one that cut off at zero. Therefore, it is often unreasonable to 
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assume that the response variable and the resulting errors have a normal distribution, 

making linear regression a less appropriate option for analysis. A suitable way to deal 

with count data is to use Poisson distribution and log link function in the analysis. The 

regression model that uses these kinds of options is called Poisson regression or Poisson 

log-linear regression model.  

 
 
Basically, the most popular methods to model count data are Poisson and 

negative binomial regression models. But Poisson regression is the more popular of the 

two and is applied to various fields. 

 
 
 
 
1.2 Statement of the Problem 
 
 

Count data often have variance exceeding the mean. In other words, count data 

usually shows greater variability in the response counts than one would expect if the 

response distribution truly were Poisson. This violates the Poisson regression 

assumption which strictly states that the mean is equal to the variance (equidispersion). 

The phenomenon where the variance is greater than the mean is called overdispersion. A 

statistical test of overdispersion is highly desirable after running a Poisson regression. 

Ignoring overdispersion in the analysis would lead to underestimation of standard errors 

and consequent of significance in hypothesis testing. The overdispersion must be 

accounted for by the analysis methods appropriate to the data. Poisson regression is not 

adequate for analyzing overdispersed data. Therefore, to overcome overdispersion, 

quasi-likelihood method will be used as well as negative binomial regression. Negative 

binomial regression is more adequate for overdispersed data. This is because negative 

binomial regression allows for overdispersion since its variance is naturally greater than 

its mean. 
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1.3 Objectives of the Study 
 
 
The objectives of this study are: 

i) To study the analysis of Poisson regression. 

ii)  To illustrate Poisson regression by analyzing count data manually and by using 

SAS 9.1. 

iii)  To demonstrate how to handle overdispersion in Poisson regression using quasi 

likelihood approach as well as negative binomial regression approach. 

iv) To see the performance of Poisson regression and the performance of negative 

binomial regression in analyzing data that has no overdispersion as well as data 

that has overdispersion from simulation study. 

 
 
 
 
1.4 Scope of the Study 
 
 

This study will focus on the analysis of Poisson regression. This study will also 

focus on the overdispersion problem that exists when dealing with real life count data. 

Overdispersion happens when the variance is greater than the mean which violates the 

equidispersion property in Poisson distribution and thus need to be taken care of. In 

accordance to overdispersion problem, the performance of Poisson regression and 

negative binomial regression in analyzing data that has no overdispersion as well as data 

that has overdispersion will be examined from simulation study. The analyses in this 

study include manual analysis and analysis by using statistical package. Statistical 

package that is used in this study is SAS 9.1. 

 
 
 
 
1.5 Significance of the Study 
 
 

This study will help the scientists to realize the use of Poisson regression in 

analyzing count data. Besides focusing on parameter estimation, this study will also help 
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to highlight about the interpretation of coefficients. This study will also help to 

overcome overdispersion problem that occurs in Poisson regression which, if ignored, 

may cause underestimation of standard errors and which consequently gives misleading 

inference about the regression parameters. Clearly, this study is imperative and will give 

much benefit. 

 
 
 
 
1.6 Outline of the Study 
 
 
This dissertation consists of 6 chapters. 
 
 

Chapter 1 gives rough idea about the study. It begins with the explanation on 

count data. This includes the characteristic of count data which is very important 

throughout the study. Chapter 1 also explains how the idea about the study came about. 

Furthermore, it also explains about the purpose of the study, the scope and the 

importance of the study. 

 
 
 Chapter 2 discusses the basic idea that is important in Poisson regression 

analysis. This chapter also discusses about common problems in Poisson regression as 

well as negative binomial regression other than previous studies done by previous 

researchers. 

 
 

Poisson regression analysis can be found in Chapter 3. This chapter gives clear 

descriptions on formulation of Poisson regression model, manual computation of 

maximum likelihood estimates, and how to interpret coefficients in Poisson regression. 

It also includes other important analyses such as goodness of fit test, residual analysis 

and inference. Other than that, this chapter also discusses about the methods to handle 

overdispersion. To illustrate Poisson regression, an example is presented here. The 

analysis of this example is done manually. 
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Chapter 4 deals with the analysis of Poisson regression using SAS 9.1. A bigger 

data is used and more factors are considered. The data is a count data in the form of rate 

and it involves overdispersion. SAS codes are provided for convenience. 

 
 
Chapter 5 presents the simulation study. Data is simulated using R 2.9.2 software 

and is analyzed by using SAS 9.1. The performance of Poisson regression and the 

performance of negative binomial regression in analyzing data that has no 

overdispersion as well as data that has overdispersion are presented in this chapter. 

 
 
Lastly, the conclusions of the study are discussed in Chapter 6. This chapter 

summarizes the whole study. Some recommendations for further research are also made 

here. 
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1.7 Analysis Flow Chart 
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