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ABSTRACT

Count data is very common in various fields suchim®iomedical science,
public health and marketing. Poisson regressiomidely used to analyze count data. It
is also appropriate for analyzing rate data. Poisegression is a part of class of models
in generalized linear models (GLM). It uses natlwgl as the link function and models
the expected value of response variable. The rdtgan the model ensures that the
predicted values of response variable will nevembégative. The response variable in
Poisson regression is assumed to follow Poissanildifon. One requirement of the
Poisson distribution is that the mean equals theamee. In real-life application,
however, count data often exhibits overdispersiOnerdipersion occurs when the
variance is significantly larger than the mean. Whds happens, the data is said to be
overdispersed. Overdispersion can cause undergistiimaf standard errors which
consequently leads to wrong inference. Besides tibsit of significance result may also
be overstated. Overdispersion can be handled Img ugiasi-likelihood method as well
as negative binomial regression. The simulatiordysthas been done to see the
performance of Poisson regression and negativenbalaegression in analyzing data
that has no overdispersion as well as data thabWaslispersion. The results show that
Poisson regression is most appropriate for datehtno overdispersion while negative

binomial regression is most appropriate for das ktas overdispersion.
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ABSTRAK

Data bilangan adalah sangat lazim dalam pelbagkinl, contohnya bidang
sains bioperubatan, kesihatan awam dan bidang peam<Regresi Poisson digunakan
secara meluas untuk menganalisis data bilanganteBleBoisson juga sesuai untuk
menganalisis data kadaran. Regresi Poisson memigakahagian daripada model kelas
model linear teritlak. Regresi ini menggunakan tdge asli sebagai fungsi hubungan.
Regresi ini memodelkan nilai jangkaan bagi pemhdd@h maklum balas. Logaritma
asli digunakan untuk memastikan supaya nilai rambéagi pembolehubah maklumbalas
tidak akan berbentuk negatif. Pembolehubah makllaebaalam regresi Poisson
dianggap mengikut taburan Poisson. Salah satutatwiran Poisson ialah nilai min
pembolehubah adalah sama dengan nilai varians.W&daimanapun, dalam aplikasi
sebenar, data bilangan sering mempamerkan masaldh $erakan. Masalah lebih
serakan terjadi apabila nilai varians melebihiiniian. Apabila ini terjadi, sesebuah data
itu dikatakan terlebih serak. Masalah lebih serdd@eh menyebabkan kurang anggaran
terhadap sisihan piawai yang kemudiannya membdarens yang salah. Selain
daripada itu, keputusan ujian signifikan pula atatebih anggar. Masalah lebih serakan
boleh diatasi dengan menggunakan kaedah kebolehjaguasi dan juga regresi
binomial negatif. Kajian simulasi telah dibuat dntmelihat keputusan regresi Poisson
dan regresi binomial negatif dalam menganalisis daing tidak mempunyai masalah
lebih serakan dan juga data yang mempunyai madalah serakan. Keputusan
menunjukkan bahawa regresi Poisson adalah palisgasauntuk data yang tidak
mempunyai masalah lebih serakan manakala regrasimial negatif adalah paling

sesuai untuk data yang mempunyai masalah lebikasera
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CHAPTER 1

INTRODUCTION

1.1 Count Data

An event count refers to the number of times amewecurs, for example the
number of individuals arriving at a serving stati@g.: bank teller, gas station, cash
register, etc.) within a fixed interval, the numlbérailures of electronic components per
unit of time, the number of homicides per yearthe number of patents applied for and
received. In many fields such as in social, behaviand biomedical sciences, as well as
in public health, marketing, education, biologiaad agricultural sciences and industrial
quality control, the response variable of intenssbften measured as a nonnegative

integer or count.

Significant early developments in count models, &osv, took place in actuarial
science, biostatistics, and demography. In receatsythese models have also been used
extensively in economics, political science, andidogy. The special features of data
in their respective fields of application have a&gdevelopments that have enlarged the
scope of these models. An important milestone | development of count data
regression model was the emergence of the geredtalizear models, of which the

Poisson regression is a special case.



In another case, an event may be thought of asetilzation of a point process
governed by some specifiedte of occurrencef the event. The number of events may
be characterized as the total number of such eg¢alizs over some unit of time. The
dual of the event count is theter-arrival time defined as the length of the period
between events. Count data regression is useftlolying the occurrence rate per unit

of time.

The approach taken to the analysis of count datesmes depends on how the
counts are assumed to arise. Count data can esiseivo common ways:
1) Counts arise from a direct observation of a porotess.

i) Counts arise from discretization of continuousHratiata.

In the first case, examples are the number of belep calls arriving at central
telephone exchange, the number of monthly abseategorkplace, the number of
airline accidents, the number of hospital admissi@and so forth. The data may also

consist of inter-arrival times for events.

In the second case, consider the following examPledit rating of agencies
may be stated as AAA, AAB, AA, A, BBB, B, and satfg where AAA indicates the

greatest credit. Suppose one codes thesg=a91,....,m. These are pseudocounts that

can be analyzed using a count regression. But ane atso regard this as an ordinal
ranking that can be modeled using a suitable lat@ntble model such as ordered
probit.

Typically, the characteristic of count data is thia¢ counts occur over some
fixed area or observation period and that the thitigat people count are often rare.
Count data, even though numeric, can create sooit#epns if it is analyzed using the
regular linear regression because of the limitedyeaof most of the values and because
only nonnegative integer values can occur. Thusntdata can potentially result in a

highly skewed distribution, one that cut off at@erherefore, it is often unreasonable to



assume that the response variable and the res@tings have a normal distribution,
making linear regression a less appropriate odoranalysis. A suitable way to deal
with count data is to use Poisson distribution kExgdlink function in the analysis. The
regression model that uses these kinds of optenoalied Poisson regression or Poisson

log-linear regression model.

Basically, the most popular methods to model codata are Poisson and
negative binomial regression models. But Poissgression is the more popular of the
two and is applied to various fields.

1.2 Statement of the Problem

Count data often have variance exceeding the nmieasther words, count data
usually shows greater variability in the responsants than one would expect if the
response distribution truly were Poisson. This ateé the Poisson regression
assumption which strictly states that the meargisakto the variance (equidispersion).
The phenomenon where the variance is greater beaméan is called overdispersion. A
statistical test of overdispersion is highly ddsieaafter running a Poisson regression.
Ignoring overdispersion in the analysis would léadinderestimation of standard errors
and consequent of significance in hypothesis tgstithe overdispersion must be
accounted for by the analysis methods appropraatbd data. Poisson regression is not
adequate for analyzing overdispersed data. Thereftor overcome overdispersion,
quasi-likelihood method will be used as well asate@ binomial regression. Negative
binomial regression is more adequate for overdsguedata. This is because negative
binomial regression allows for overdispersion siitse/ariance is naturally greater than

its mean.



1.3  Objectives of the Study

The objectives of this study are:

i) To study the analysis of Poisson regression.

i) To illustrate Poisson regression by analyzing calata manually and by using
SAS 9.1.

iii) To demonstrate how to handle overdispersion ingdaisegression using quasi
likelihood approach as well as negative binomigression approach.

iv) To see the performance of Poisson regression ang@dfformance of negative
binomial regression in analyzing data that has veraispersion as well as data

that has overdispersion from simulation study.

1.4  Scope of the Study

This study will focus on the analysis of Poissogression. This study will also
focus on the overdispersion problem that existsnaiealing with real life count data.
Overdispersion happens when the variance is grézderthe mean which violates the
equidispersion property in Poisson distribution dnds need to be taken care of. In
accordance to overdispersion problem, the perfoceanf Poisson regression and
negative binomial regression in analyzing data kizet no overdispersion as well as data
that has overdispersion will be examined from satah study. The analyses in this
study include manual analysis and analysis by usitagistical package. Statistical
package that is used in this study is SAS 9.1.

1.5  Significance of the Study

This study will help the scientists to realize th&e of Poisson regression in

analyzing count data. Besides focusing on paranesténation, this study will also help



to highlight about the interpretation of coeffiden This study will also help to
overcome overdispersion problem that occurs indéoigegression which, if ignored,
may cause underestimation of standard errors amchvdonsequently gives misleading
inference about the regression parameters. Claghaibystudy is imperative and will give
much benefit.

1.6  Outline of the Study

This dissertation consists of 6 chapters.

Chapter 1 gives rough idea about the study. Itrizegiith the explanation on
count data. This includes the characteristic ofntodiata which is very important
throughout the study. Chapter 1 also explains H@vdea about the study came about.
Furthermore, it also explains about the purposethef study, the scope and the

importance of the study.

Chapter 2 discusses the basic idea that is impoita Poisson regression
analysis. This chapter also discusses about conpraisiems in Poisson regression as
well as negative binomial regression other tharviptes studies done by previous

researchers.

Poisson regression analysis can be found in Ch&pt€his chapter gives clear
descriptions on formulation of Poisson regressioadeh manual computation of
maximum likelihood estimates, and how to intermeefficients in Poisson regression.
It also includes other important analyses suchaasligess of fit test, residual analysis
and inference. Other than that, this chapter alscudses about the methods to handle
overdispersion. To illustrate Poisson regressiaon,egaample is presented here. The
analysis of this example is done manually.



Chapter 4 deals with the analysis of Poisson regmesising SAS 9.1. A bigger
data is used and more factors are considered. 3taeigla count data in the form of rate

and it involves overdispersion. SAS codes are plexyifor convenience.

Chapter 5 presents the simulation study. Datamsilsited using R 2.9.2 software
and is analyzed by using SAS 9.1. The performarfcBaisson regression and the
performance of negative binomial regression in ymay data that has no

overdispersion as well as data that has overdigpesase presented in this chapter.

Lastly, the conclusions of the study are discusse@hapter 6. This chapter
summarizes the whole study. Some recommendatiorfarther research are also made

here.



1.7  Analysis Flow Chart
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