MOBILITY ENHANCEMENT OF NANOSCALE BIAXIAL STRAINED SILICON METAL-OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR

WONG YAH JIN

UNIVERSITI TEKNOLOGI MALAYSIA

MOBILITY ENHANCEMENT OF NANOSCALE BIAXIAL STRAINED SILICON METAL-OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR

WONG YAH JIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Electrical Engineering

> Faculty of Electrical Universiti Teknologi Malaysia

> > APRIL 2009

ABSTRACT

Scaling down of Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) devices has been a driving force in IC industry due to high speed and low power requirements. The recent MOSFET devices have been scaled down to 50nm gate lengths where the gate oxide thickness has become thin enough to suppress the short channel effect (SCE). However further scaling down of the MOSFET beyond 50nm will cause the SCE, degrading the current drivability and electron mobility of a MOSFET. Therefore further improvement without minimizing the gate length is strongly required. Strained silicon (Si) is a promising candidate for improving the performance of MOSFET technology without compromising the control of short channel effects since it provides device performance enhancements through changes in material properties rather than changes in device geometry or doping. In this research, the design, fabrication and characterization of high speed and low power performance for 100nm of strain silicon P-type Metal Oxide Semiconductor (PMOS) structures are experimented. With an oxide thickness of 5nm and germanium (Ge) concentration of 30%, the threshold voltage for the strained Si and unstrained structures are -0.74V and -0.96V, respectively. In addition, strained Si shows approximately 20% enhancement in drain current compared to the unstrained structure. The increase of valence band in strained Si as compared to unstrained Si indicates the split of the energy band. This causes holes to increasingly occupy the top band and would increase the mobility of strained Si. The strained Si shows mobility enhancement compared to unstrained structure. Meanwhile, the effect of Ge concentration to strained Si showed that as Ge concentration increased from 20% to 40%, the drain current and hole concentration is increased while the threshold voltage decreased. However moderate Ge concentration must be chosen with suitable strained Si thickness in order to prevent lattice mismatch. The results show that the strained Si critical thickness is 10nm with a 30% Ge concentration for the single channel strained Si. The strained Si exhibits low threshold voltage as the strained Si thickness increases from 5nm to 8nm. Therefore 7nm strained Si thickness was used to create strained Si with 30% Ge concentration. Simulations provide more realistic results and allow researchers to gain a better understanding of the effects of different device parameters on the overall device performance without fabrication.

ABSTRAK

Pengecilan skala peranti Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) merupakan dorongan kuat dalam industri litar bersepadu (IC) untuk memenuhi keperluan kepantasan dan penggunaan kuasa yang rendah. Peranti MOSFET terkini telah diskalakan sehingga panjang salirannya adalah 50nm di mana ketebalan get oksida telah menjadi cukup nipis untuk menyekat kesan saliran pendek (SCE). Walau bagaimanapun, pengecilan MOSFET di bawah julat 50nm akan menyebabkan SCE, dan seterusnya merendahkan kelancaran arus dan kelincahan elektron. Penambahbaikan selanjutnya tanpa memendekkan panjang saliran amat diperlukan. Silikon terik adalah satu calon yang menjanjikan pembaikan prestasi teknologi MOSFET tanpa menjejaskan kawalan terhadap SCE kerana ia memberi penambahan prestasi peranti melalui pengubahan dalam sifat bahan berbanding dengan perubahan dari segi geometri peranti atau pendopan. Dalam kajian ini, rekabentuk dan fabrikasi untuk struktur 100nm silikon terik akan dikaji. Penyelidikan terhadap penambahan kelincahan pada Si PMOS yang terterik telah dilakukan dan dibezakan dengan PMOS yang tidak terterik. Voltan ambang bagi silikon terik and tidak terterik ialah -0.74V dan -0.96V pada ketebalan oksida 5nm dengan 20% kepekatan germanium (Ge). Silikon terik juga menunjukkan peningkatan arus salir sebanyak 20% berbanding dengan silikon tidak terterik. Kenaikan jalur valens pada silikon terterik berbanding dengan silikon tidak terterik menunjukkan jalur tenaga terbahagi. Ini menyebabkan lohong bertambah banyak menetap pada puncak jalur dan meningkatkan kelincahan silicon terterik. Silikon terik mempamerkan peningkatan kelincahan elektron berbanding dengan silikon tidak terterik. Di samping itu, kesan daripada kepekatan Ge kepada silikon terik mempamerkan peningkatan arus salir dan kepekatan lohong bersama dengan penurunan voltan ambang apabila kepekatan germanium meningkat dari 20% hingga 40%. Walau bagaimanapun, kepekatan Ge yang sesuai dengan ketebalan silikon terik perlu dipilih untuk mengelakkan kesan kekisi tak padan. Keputusan juga menunjukkan ketebalan kritikal silikon terik ialah 10nm pada 30% kepekatan Ge. Silikon terik mempamerkan voltan ambang yang rendah apabila ketebalan silikon terik meningkat dari 5nm ke 8nm. Oleh itu, silikon terik dengan ketebalan 7nm dan kepekatan Ge 30% dipilih untuk membentuk silikon terikan. Kaedah simulasi memberi keputusan yang lebih realistik dan membenarkan penyelidik untuk memperolehi pemahamaman yang lebih baik tentang kesan daripada parameter peranti yang berbeza terhadap prestasi peranti tersebut secara menyeluruh, tanpa proses fabrikasi.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	xviii
	LIST OF SYMBOLS	XX
	LIST OF APPENDICES	xxii
1	INTRODUCTION	1
	1.1 Background of Problem	2
	1.2 Problem Statement	3
	1.3 Objectives of the Study	4
	1.4 Scope of the study	5
	1.5 Significance of Study	5
	1.6 Thesis Structure Overview	6
2	LITERATURE REVIEW	8
	2.1 Introduction to MOSFET	8
	2.2 Introduction to Strained Silicon	11

	2.3	State of	of Art Strain Silicon Technologies	13
		2.3.1	Uniaxial Strain Silicon	13
		2.3.2	Biaxial Strain Silicon	16
	2.4	Physic	es of Strain Silicon	17
		2.4.1	The Si/SiGe lattice structures	18
		2.4.2	Critical Thickness	19
		2.4.3	Misfit dislocation/Mismatch lattice	21
		2.4.4	The Band Structure	26
	2.5	Carrie	r Mobility in Strained Silicon	29
		2.5.1	Effective Mass	30
		2.5.2	Effective Mobility	31
		2.5.3	Summary	32
3	PRO	CESS S	SIMULATION	33
	3.1	Introd	uction to TCAD	34
		3.1.1	Overview of Silvaco's TCAD Software	35
		3.1.2	ATHENA and ATLAS	35
		3.1.3	DevEdit and Tonyplot	38
	3.2	The Si	ilvaco's Example Process Simulation	39
	3.3	The U	nstrained (control) PMOS Process Simulation	41
	3.4	The Si	ingle Channel Strained PMOS Process Simulation	42
	3.5	The D	ual Channel Strained PMOS Process Simulation	60
4	DEV	ICE SI	MULATION	65
	4.1	The St	tructure Specification	67
	4.2	The M	laterial Model Specification	67
	4.3	Nume	rical Method Selection	68
	4.4	Soluti	on Specification	69
		4.4.1	Drain Current versus Gate Voltage Curve	69
		4.4.2	Drain Current versus Drain Voltage curve	69
		4.4.3	Gate Capacitance versus Gate Voltage Curve.	70
	4.5	Result	Analysis	71
		4.5.1	The Threshold Voltage (V _{th}) Extraction	73
		4.5.2	The Subthreshold Swing Extraction	73

	4.5.3	Drain Induced Barrier Lowering Extraction	74
	4.5.4	Determination of Energy Band, Hole Mobility and	
		Electric Field	74
4.6	The D	evice Simulation Model	75
	4.6.1	Band Gap Narrowing	75
	4.6.2	Concentration Dependent For Low Field Mobility	
		Model	75
	4.6.3	Parallel Electric Field Dependence for Mobility	
		Model	76
	4.6.4	Shockley-Read-Hall Recombination Model	76
	4.6.5	Impact Ionization Model	77
DAT			0.0
DAT	IA ANA	LYSIS AND RESULTS	80
5.1	Perfor	mance comparison between Strained Silicon and	80
			8U 0.1
	5.1.1	I_{ds} versus V_{gs} Curve	ð1 01
	5.1.2	Subtrieshold Swing	81
	5.1.3	The I_{ds} versus V_{ds} Curve	82
	5.1.4	Extracted DIBL parameter	83
	5.1.5	Capacitance versus Gate Voltage Curve	84
	5.1.6	Energy band versus Depth Curve	85
	5.1.7	Electric field versus Depth Curve	85
	5.1.8	Hole Concentration versus Depth Curve	87
	5.1.9	Hole Mobility versus Depth Curve	88
5.2	Effect	s of Ge Concentration to Single Channel Strained	0.0
	Silico	n PMOS Device	90
	5.2.1	The I_{ds} versus V_{gs} Curve	91
	5.2.2	The Subthreshold Swing	92
	5.2.3	The I_{ds} versus V_{ds} Curve	93
	5.2.4	Drain Induced Barrier Lowering	94
	5.2.5	Capacitance versus Gate voltage Curve	95
	5.2.6	Energy band versus Depth Curve	95
	5.2.7	Hole Concentration versus Depth Curve	96
	5.2.8	Hole Mobility versus Depth Curve	98

5

5.3	Effect	t of Si cap Thickness to Single Channel Strain	ned
	Silico	n PMOS Device	100
	5.3.1	The I_{ds} versus V_{gs} Curve	100
	5.3.2	The Subthreshold Swing	101
	5.3.3	The I_{ds} versus V_{ds} Curve	102
	5.3.4	Drain Induced Barrier Lowering	103
	5.3.5	Capacitance versus Gate voltage Curve	103
	5.3.6	Energy band versus Depth Curve	104
	5.3.7	Hole Concentration versus Depth Curve	105
	5.3.8	Hole Mobility versus Depth Curve	107
5.4	Perfor	rmance comparison between single channel and d	ual
	chann	el Strain Silicon PMOS	108
	5.4.1	The I_{ds} versus V_{gs} Curve	108
	5.4.2	The Subthreshold Swing	109
	5.4.3	The I_{ds} versus V_{ds} Curve	110
	5.4.4	DIBL	111
	5.4.5	Capacitance versus Gate voltage Curve	111
	5.4.6	Energy band versus Depth Curve	112
	5.4.7	Hole Concentration versus Depth Curve	113
	5.4.8	Hole Mobility versus Depth Curve	114
5.5	Effect	ts of Ge concentration in dual channel strained Si	117
	5.5.1	The I_{ds} versus V_{gs} curve	117
	5.5.2	The Subthreshold Swing	118
	5.5.3	The I_{ds} versus V_{ds} curve	119
5.6	Mobil	lity extraction	120
5.7	Comp	parison of simulation data with experimental result	122
CON	ICLUS	ION AND SUGGESTIONS	124
6.1	Concl	usion	124
6.2	Sugge	estion	126
REF	EREN	CES	128
APP	ENDIC	ES A - I	134 - 166

6

LIST OF REFERENCES

- [1] Neaman, D.A., *Semiconductor Physics and Devices: Basic Principle*. Third ed. 2003 Singapore: McGraw Hill Companies Inc.
- [2] Wijeratne, S.B., et al., A 9-GHz 65-nm Intel Pentium 4 Processor Integer Execution Unit. IEEE Journal Of Solid-State Circuits, 2007. 42(1): p. 26-37.
- [3] Zeitzoff, P.M. Mosfet Scaling Trends and Challenges Through The End of The Roadmap. in Proceedings of the 26th IEEE Custom Integrated Circuits Conference (CICC). 2004. Orlando: IEEE 2004. p. 233-240
- [4] Acosta, T. and S. Sood, *Engineering strained silicon looking back and into the future*, in *IEEE Potential*. 2006, IEEE. p. 31 34.
- [5] Cho, H., B.G. Park, and J.D. Lee, *Nano-Scale SONOS Memory with a Double-Gate MOSFET Structure*. Journal of the Korean Physical Society, 2003. 42(2): p. 233-236.
- [6] Yuan, J., P.M. Zeitzoff, and J.C.S. Woo, Source/Drain Parasitic Resistance Role and Electrical Coupling Effect in sub 50 nm MOSFET Design, in ESSDERC. 2002, IEEE: Firenze, Italy. p.503-506
- [7] Goyal, P., Design and Simulation of Strained-Si/Strained-SiGe Dual Channel Hetero-structure MOSFETs, in Department Of Electrical Engineering. 2007, Rochester Institute Of Technology: New York. p. 106.
- [8] Anderson, B. L., & Anderson, R. L. (2005). Fundamentals of Semiconductor Devices (International ed.). Boston: McGraw Hill.
- Kahng, Dawon, *Electric Field Controlled Semiconductor Device* U. S. Patent No. 3,102,230 (Filed 31 May 31, 1960, issued August 27, 1963).

- [10] Lee, J.D., W.Y. Choi, and B.-G. Park. Challenges in Nanoscale Devices and Breakthrough. in IEEE National Symposium on Microelectronics. 2005. Kuching, Malaysia: IEEE. p. A1-A5.
- [11] Chau, R., et al., *Silicon nano-transistors for logic applications*. Science Direct Physica E, 2003. 19 p. 1-5.
- [12] Shin, K., Technologies for enhancing multi-gate Si MOSFET performance, in Electrical Engineering and Computer Sciences. 2006, University of California: Berkeley.
- [13] Arora, N., MOSFET Models for VLSI Circuit Simulation: Theory and Practive. 1993, Wien: Springer-Verlag.
- [14] Hu, C. Device challenges and opportunities. in Symposium an VLSI Technology Digest of Technical Papers. 2004. Honolulu, USA: IEEE. p.4-5.
- [15] Huff, H.R., et al., *High Dielectric Constant Materials VLSI MOSFET Applications Springer Series* in Advanced Microelectronics. Vol. 16. 2005, Berlin Heidelberg: Springer.
- [16] Huang, X., et al. Sub 50-nm FinFET: PMOS. in International Electron Devices Meeting. 1999. Washington, DC: IEEE. p.67-70.
- [17] Kavalieros, J., et al. Tri-Gate Transistor Architecture with High-k Gate Dielectrics, Metal Gates and Strain Engineering. in Symposium on VLSI Technology Digest of Technical Papers. 2006. Honolulu: IEEE. p.50-51.
- [18] Jehl, X., et al., Silicon Single Electron Transistors With SOI and MOSFET Structures: The Role of Access Resistances. IEEE Transactions On Nanotechnology, 2003. 2(4): p. 308-313.
- [19] Mathews, R.H., et al. A new RTD-FET logic family. in Proceedings of the IEEE.1999. Houston, USA: IEEE. p.596-605.
- [20] Nirschl, T., et al. The tunneling field effect transistor (TFET) as an add-on for ultra-low-voltage analog and digital processes. in International Electron Devices Meeting. 2004. San Francisco: IEEE. p. 195-198.
- [21] Kim, K.R., et al., Silicon-Based Field-Induced Band-to-Band Tunneling Effect Transistor. IEEE Electron Device Letters, 2004. 25(6): p. 439-441
- [22] Choi, W.Y., et al., 100-nm n-/p-Channel I-MOS Using a Novel Self-Aligned Structure. IEEE Electron Device Letters, 2005. 26(4). p. 261-263.

- [23] Leong, M., et al. Scaling Beyond Conventional CMOS device. in 7th International Conference on Solid-State and Integrated Circuits Technology. 2004. Beijing, China: IEEE. p. 31-34.
- [24] Huff, H.R. and P.M. Zeitzoff. The Ultimate CMOS Device: A 2003 Perspective (Implications For Front-End Characterization and Metrology). in International Conference on Characterization and Metrology for ULSI Technology. 2003. Texas, USA: American Institute of Physics. p.107-123
- [25] Aquilino, M. Advancing RIT to submicron technology: Design and Fabrication of 0.5um N-channel MOS Transistors. in 22nd Annual Conference on Microelectronic Engineering. 2004. NY, USA. p. 1-6.
- [26] Collins, L., Silicon takes the strain, in The IEE Review. 2003, IET: United Kingdom. p. 46-49.
- [27] Gannavaram, S., N. Pesovic, and M.C. Ozturk. Low Temperature (≤ 800°C) Recessed Junction Selective Silicon-Germanium SourceDrain Technology for sub-70 nm CMOS. in IEEE International Electron Devices Meeting. 2000. San Francisco, CA, USA: IEEE. p. 18.3.1-18.3.4
- [28] Mohta, N. and S.E. Thompson, *Physics of Strained Silicon*, in *IEEE Circuits and Devices Magazine*. 2005, IEEE: USA. p. 18-23.
- [29] Thompson, S.E., et al., Uniaxial-process-induced strained-Si: extending the CMOS roadmap. IEEE Transactions on Electron Devices, 2006. 53(5): p. 1010-1020.
- [30] Thompson, S., et al. A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 /spl mu/m/sup 2/ SRAM cell. in Electron Devices Meeting, IEDM. Digest International. 2002. Hong Kong: IEEE. p. 61-64.
- [31] Thean, A.V.-Y., et al. Uniaxial-Biaxial Stress Hybridization For Super-Critical Strained-Si Directly On Insulator (SC-SSOI) PMOS With Different Channel Orientations. in Electron Devices Meeting IEDM Technical Digest IEEE International. 2005: IEEE. p. 509-512.
- [32] Bollani, M., et al., Compressively strained Ge channels on relaxed SiGe buffer layers. Materials Science and Engineering, 2003. B(101): p. 102-105.

- [33] Temple, M.P., et al., Compressively-strained, buried-channel Si_{0.7}Ge_{0.3} p-MOSFETs fabricated on SiGe virtual substrates using a 0.25μm CMOS process.
 IEEE Transactions on Electron Devices, 2004. X(X): p. 2-8.
- [34] Jung, J., et al., Implementation of Both High-Hole and Electron Mobility in Strained Si/Strained Si_{1-y}Ge_y on Relaxed Si_{1-x}Ge_x (x ; y) Virtual Substrate. IEEE Electron Device Letters, 2003. **24**(7): p. 460-462.
- [35] Thompson, S.E., et al., A 90-nm Logic Technology Featuring Strained-Silicon. IEEE Transactions On Electron Devices, 2004. 51(11): p. 1790-1797.
- [36] Herman, M.A., Silicon-Based Heterostructures: Strained-Layer Growth by Molecular Beam Epitaxy. Cryst. Res. Technol., 1999. 34(5-6): p. 583595.
- [37] Jain, S. C. et al., Stresses and Strains in Lattice-mismatched Stripes, Quantum Wires, Quantum Dots, and Substrates in Si Technology. Journal of Applied Physics, 1996. 79(11): p. 81458165.
- [38] Shiraki, Y. and A. Sakai, Fabrication technology of SiGe hetero-structures and their properties. Surface Science Reports, 2005. 59 p. 153207
- [39] Izyumskaya, N.F., V.S. Avrutin, and A.F. Vyatkin, *Control over strain relaxation in Si-based heterostructures*. Solid-State Electronics, 2004. 48 p. 12651278.
- [40] Wang, K.L., S.G. Thomas, and M.O. Tanner, SiGe band engineering for MOS, CMOS and quantum effect devices. Journal of Materials Science: Materials in Electronics, 1995. 6(5): p. 311-324.
- [41] Gupta, S., et al., Reducing threading dislocation densities in SiGe mismatched layers by controlling strain rate and surface roughness, in International SiGe Technology and Device Meeting 2006, IEEE: New Jersey, USA. p. 1-2.
- [42] Cavassilas, N., F. Aniel, and G. Fishman. *Energy-Band Structure of Strained Indirect Gap Semiconductor: A k . p Method.* in Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems. 2002. USA: Nano Science and Technology Institute p.411-414.
- [43] Cavassilas, N. and J.-L. Autran. Capacitance-Voltage Characteristics of Metal-Oxide-Strained Semiconductor Si/SiGe Heterostructures. in Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems. 2002. USA: Nano Science and Technology Institute p. 600-603.

- [44] Lee, K., et al., *Physical Understanding of Low-Field Carrier Mobility in Silicon MOSFET Inversion Layer*. IEEE Transactions on Electron Devices, 1991. 38(8): p. 1905-1912.
- [45] Yin, H., Strain Relaxation of SiGe on Compliant BPSG and Its Applications, in Department Of Electrical Engineering. 2004, Princeton University: New Jersey.
- [46] Manku, T. and A. Nathan, Electron Drift Mobility Model for Devices Based on Unstrained and Coherently Strained Si_{1-x}Ge_x, Grown on ¡001¿ Silicon Substrate.
 IEEE Transactions on Electron Devices, 1992. 39(9): p. 2082-2089.
- [47] Illingworth, V. and J. Cullerne, The Penguin Dictionary of Physics. 3rd ed. 2000, London: Penguin Books.
- [48] Silvaco Data Systems Inc. *Virtual Wafer Fab Rev. 112107_01*. Santa Clara: Commerical Catalogue. 2008
- [49] Silvaco Data Systems Inc. Victory Process Full Physical 3D Process Simulator Rev. 122107_03. Santa Clara: Commercial Catalogue. 2008
- [50] Silvaco Data Systems Inc. Process Simulation Framework Rev. 112807_20. Santa Clara: Commercial Catalogue. 2008
- [51] Olsen, S.H., et al., Doubling speed using strained Si/SiGe CMOS Technology. Thin Solid Films, 2006. 508: p. 338-341.
- [52] Olsen, S.H., et al., Study of single- and dual-channel designs for high performance strained-Si-SiGe n-MOSFETs. IEEE Transactions on Electron Device, 2004. 51(7): p. 1245-1252.
- [53] MinJoo, L.L., et al., Strained Si, SiGe, and Ge channels for high-mobility metaloxide-semiconductor field-effect transistors. Journal of Applied Physics, 2005.
 97: p. 1-17.
- [54] M. T. Currie, et al., Carrier mobilities and process stability of strained Si nand p-MOSFETs on SiGe virtual substrates. Journal of Vacuum Science and Technology, 2001. 19(6): p. 2268-2279.
- [55] Chandrasekaran, K., et al., Effect of Substrate Doping on the CapacitanceVoltage Characteristics of Strained-Silicon pMOSFETs. IEEE Electron Device Letters, 2006. 27(1): p. 62-64.

- [56] Song, Y.-J., et al., Effects of Si-cap layer thinning and Ge segregation on the characteristics of Si/SiGe/Si heterostructure pMOSFETs. Solid-State Electronics, 2002. 46 p. 1983-1989.
- [57] Silvaco Data Systems Inc. Device Simulation Framework Rev. 020508_25. Santa Clara: Commercial Catalogue. 2008
- [58] Silvaco Data Systems Inc. TonyPlot: 1D/2D Interactive Visualization Tool Rev. 112107_01. Santa Clara: Commerical Catalogue. 2008
- [59] Silvaco Data Systems Inc. ATHENA User's Manual 2D Process Simulation Software. Santa Clara: User Manual. 2000
- [60] Mheen, B., et al., Strained-SiGe Complementary MOSFETs Adopting Different Thicknesses of Silicon Cap Layers for Low Power and High Performance Applications. Electronics and Telecommunications Research Institute Journal, 2005. 27(4): p. 439-445.
- [61] Kawasaki, H., et al. Impact of Parasitic Resistance and Silicon Layer Thickness Scaling for Strained-Silicon MOSFETs on Relaxed Sil,Ge, virtual substrate. in International Electron Device Meeting. 2004. San Francisco, USA: IEEE. p. 169-172.
- [62] Silvaco Data Systems Inc. Devedit: Structure And Mesh Editor Rev. 112807_03. Santa Clara: Commercial Catalogue. 2008
- [63] Silvaco Data Systems Inc. ATLAS User's Manual 2D Device Simulation Software. Santa Clara: User Manual. 2000
- [64] Hong, T.C., *Optimization of Nanoscale CMOS Performance*. 2007, Universiti Teknologi Malaysia: Skudai.
- [65] Rim, K., et al. Enhanced Hole Mobilities in Surface-channel Strained-Si p-MOSFETs. in International Electron Devices Meeting. 1995. Washington: IEEE. p. 517-520.
- [66] Virginia Semiconductor. The General Properties of Si, Ge, SiGe, SiO₂ and Si₃N₄.
 USA: Article. June 2002
- [67] Chen, X., et al., *Hole and electron mobility enhancement in strained SiGe vertical MOSFETs*. IEEE Transactions on Electron Devices, 2001. 48(9): p. 1975-1980.