THE STUDY ON THE MICRO-PITS LOCATION ON THE EXTRUSION DIE SURFACE

NORHAYATI BINTI AHMAD

UNIVERSITI TEKNOLOGI MALAYSIA

THE STUDY ON THE MICRO-PITS LOCATION ON THE EXTRUSION DIE SURFACE

NORHAYATI BINTI AHMAD

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (*Mechanical*)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > **DECEMBER 2010**

To my beloved parent, husband and my friends without fail, encourage and support me to concentrate on my study

ACKNOWLEDGEMENT

First of all, thank to ALLAH for his blessing and kindness for giving an opportunity to complete my master project successfully.

Secondly, I also wish to express my sincere appreciation and very thankful to my supervisor, Dr. Shahrullail bin Samion, for encouragement, guidance, critics and friendship through completing this project. Special thanks to all staff from Mechanical Engineering Faculty for their support and cooperation.

I am also indebted to Politeknik Malaysia and Malaysian Government for funding my Master study.

My sincere appreciation to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. I am grateful to all my family members. I particularly wish to acknowledge my husband, Rosli Mostakim for his patience and support.

ABSTRACT

The present research concerns study of the effects of micro-pits arrays formed on the taper die by experimental verification using. A series of taper die with micro-pits with different location at existence of die were design. A taper without micro-pits was used as a reference. The lubricant is additive free paraffinic mineral oil. P2 is a low viscosity lubricant while P3 is a high viscosity lubricant. The experimental results are focusing on the extrusion load, billet surface roughness, and grid pattern observation. From the result, the micro-pits array affected on surface roughness if the lubricant viscosity is higher but the extrusion load also become higher.

ABSTRAK

Kajian ini bertujuan untuk mengkaji kesan susunan pit mikro yang dibuat di atas permukaan acuan tirus dengan menggunakan kaedah experimen. Sepasang acuan tirus dengan pit mikro yang dibuat pada lokasi yang berbeza pada bahagian keluaran acuan tirus. Acuan tirus tanpa pit mikro dijadikan sebagai rujukan. Minyak paraffin digunakan sebagai pelincir. P2 adalah parafin berkelikatan rendah manakala P3 adalah parafin berkelikatan tinggi. Keputusan eksperimen seperti beban penyempritan, kelicinan permukaan billet, dan pencerapan corak pada grid di. diberi perhatian. Daripada keputusan, susunan pit mikro memberi kesan pada kelicinan permukaan jika pelincir yang digunakan adalah berkelikatan tinggi tetapi beban penyempritan juga bertambah.

TABLE OF CONTENTS

СНАРТЕ	CR TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	ix
	LIST OF FIGURES	Х
	LIST OF SYMBOLS	xiii
	LIST OF APPENDICES	xiv
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Problem Statements	2
	1.3 Objectives	2
	1.4 The Aims and Scope of the Investigations	3
2	LITERATURE REVIEW	4
	2.1 Introduction	4
	2.2 Sliding	6
	2.3 Strip drawing	17
	2.4 Rolling	23
	2.5 Extrusion	34

3	EXPERIMENTAL MATERIALS AND METHODS	42
	3.1 Introduction	42
	3.2 Experimental Apparatus	42
	3.2.1 Billet	43
	3.2.2 Tool and Die	44
	3.2.3 Lubricants	45
	3.3 Preparation before experiment	47
	3.3.1 Billet preparation	47
	3.3.2 Die preparation	48
	3.4 Vickers Hardness Testing	49
	3.5 Experimental Procedure	50
	3.6 Data Measurement and Comparison	51
	3.6.1 Extrusion Load	52
	3.6.2 Surface Measurement	52
	3.6.2.1 Roughness Analysis	54
4	RESULT AND DISCUSSION	55
	4.1 Introduction	55
	4.2 Extrusion Load	55
	4.2.2 Effects of Micro-pits Array on Extrusion Load	56
	4.2.3 Effects of Lubricants on Extrusion Load	57
	4.3 Surface Roughness	58
	4.4 Grid Lines Observation	62
5	CONCLUSIONS	65
	5.1 Conclusions	65
	5.2 Suggestions	66
	NOTS	67
KEFEKE	INCED	0/
Appendic	es	69-73

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	The results of measurement of final wear values and wear rates of tested specimens (mean values)	7
2.2	Characteristics of oil pockets	9
2.3	Average values and measuring uncertainties of the linear wear (ZPr)	11
2.4	Geometric features of the samples; $w = width$ of the features, $h1 = depth$, $f = fraction$ of area coverage	12
2.5	The observation of this experiments by varies criteria	14
2.6	Description of the geometric features of textured die inserts: w, width of the features; h1, depth; f, fraction of area coverage	18
2.7	Comparison result between the directions transverse and longitudinal to the rolling direction	30
2.8	Geometric parameters of the pockets designed	35
2.9	Process parameters and billet dimensions used in FE simulation and experimental verification	36
3.1	Properties of JIS SKD 11	44
3.2	The parameters of PARAFFIN MINERAL OIL 95.280 cSt	46
3.3	The parameters of PARAFFIN MINERAL OIL 461.40 cSt	46
3.4	Vickers Hardness tester setting	48
4.1	R _a value for billet	61

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE	
2.1	Examples of specimen surfaces before tribologic test	,	7
2.2	The effect of oil pockets area density on total linear wear of analyzed assembly (95% confidence interval)	the	7
2.3	The scheme of tested assembly	:	8
2.4	Shape and dimensions of specimen	ę	9
2.5	Photos of surfaces with burnished oil pockets: (a) K1M, (b) K2B, (c) K3VB. Pictures were taken after the test.		9
2.6	Shape and dimensions of counter-specimen		10
2.7	The coefficient of friction versus sliding distance for assemb with sample K3VB	ly	11
2.8	Examples of surface topography of textured samples		12
2.9	Schematic representation of the crossed cylinder configuration	on	13
2.10	Comparison of grooved pattern dimensions and contact widt for: (a) wide and (b) narrow contact areas	h	16
2.11	Relative orientation of chevrons in relation to sliding direction	on	16
2.12	Schematic of strip drawing rig. Strain gauges are attached to die holder and shackle to measure the indentation and pull for	the prces	18
2.13	Measurements of drawing force (D) during strip-drawing tes	ts	19
2.14	Optical micrographs showing examples of surface features o strips after drawing	n	19
2.15	Schematic outline of experimental equipment		20
2.16	Experimental investigation of the lubricant escape from pock in the strip surface	cets 2	21
2.17	Liquid pressure and die pressure as functions of axial position for the reference experiment.	n ź	22

2.18	Local film thickness and liquid pressure distribution at the rear pocket edge of trapped lubricant	22
2.19	Die pressure p and hydrostatic pocket pressure q_o as a function of the distance from the die entry in experiments C1 and C7	23
2.20	Forward slip in for cold rolling steel strips with longitudinal roughness	24
2.21	Roll separating force in cold rolling steel strips with longitudinal roughness	24
2.22	Frictional power in cold rolling steel strips with longitudinal roughness	25
2.23	Transverse surface roughness of rolled steel strips	25
2.24	Longitudinal surface roughness of rolled steel strips	26
2.25	Forward slip in cold rolling steel strips with transverse roughness	26
2.26	Roll separating force in cold rolling steel strips with transverse roughness	26
2.27	Frictional power in rolling steel strips with transverse roughness	27
2.28	Transverse surface roughness of rolled steel strips	27
2.29	Longitudinal surface roughness of rolled steel strips	28
2.30	Forward slip in cold rolling aluminum strips with transverse roughness	28
2.31	Effect of surface directionality on forward slip in cold rolling aluminum strips	29
2.32	Forward slip in cold rolling steel strips with different lubricants	29
2.33	The roughness of rolls affected the rolls force with different speed	31
2.34	The strip roughness as a function of the roll roughness	32
2.35	SEM photographs of the strip surfaces using ground roll with $Ra = 0.32 \ \mu m$	32
2.36	SEM photographs of the strip surfaces, using sand-blasted roll with $Ra = 1.8 \ \mu m$	33
2.37	SEM photographs of the roll surfaces; ground and sand-blasted	33
2.38	Geometry and dimensions of the flat die (No. 0)	34
2.39	Pocket designs for the dies to produce a wide thin-walled profile (top view of the die pocket)	35
2.40	Metal flow into and through the pocket die No. 1	36

2.41	Experimental observations (left) and FE simulation results (right) of the profile nose after going through the flat and pocket dies	37
2.42	Example dies applied to extrusion of profile 1 (on the top) and profile 2 (on the bottom)	38
2.43	Macrostructures of material in the billet rest while extruding profile 1 by using different die configurations	38
2.44	Macrostructures of material in the billet rest while extruding profile 2 by using different die configurations	39
2.45	Extrusion force as a function of stem stroke while extruding profile 1 from 6060 alloy for different die geometry	39
2.46	Extrusion force as a function of stem stroke while extruding profile 2 from 6060 alloy for different die geometry	39
2.47	Experimental apparatus and pit arrangement	40
2.48	Shear strain of work-piece along on the plane plate tool	41
3.1	Schematic sketch of plane strain extrusion apparatus	43
3.2	Schematic sketch of billets	44
3.3	Micro-pits arrangement	45
3.4	Size of indention using Vickers testing	48
3.5	Schematic of typical Vickers hardness indentation	49
3.6	Schematic representation of apparatus of plane strain extrusion	51
3.7	Surface roughness test area	53
3.8	Measurement direction of stylus	53
3.9	Surface roughness parameter	54
3.10	Definition of mean roughness Ra	54
4.1	Extrusion load as function of piston stroke while extruding for different array of micro-pits	56
4.2	Extrusion load-piston stroke for different lubricant	58
4.3	Measurement direction of stylus and surface roughness test area	58
4.4	Surface roughness distributions along on the experimental surface of billet.	61
4.5	Coordinates used to measure the grid inclination at taper die	62
4.6	Grid slope inclination distribution on the taper die sliding plane	64

LIST OF SYMBOLS

<i>F</i> -	Force
°C	Degree Celcius (temperature unit)
Hv	Vickers hardness (strength unit)
mm/s	Speed
mm	Displacement
Ν	Load which equal to weight time gravity acceleration,
	9.81m/s ²
μm	Thickness value with $\mu = 1 \times 10^{-6}$
А	Area
d	Diameter

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Gantt Chart	71
В	Hardness billet after annealing	72
С	Schematic of billet	73
D	Schematic of die	74
E	Array of pit on die	75

CHAPTER 1

INTRODUCTION

1.1 Introduction

The importance of tribological parameters in metal forming processes have been generally recognized as affecting tool and die life, material flow during forming, work-piece integrity and surface finish, the relationship of the lubricant to the machine elements, cost considerations and energy conservation. Surface texturing has been successfully used in many applications to improve the performance of surfaces. Some concepts of texturing find their inspiration in nature. For example, surface texturing can be used to reduce drag on engineering surfaces moving through liquids. Surface texturing also as an option of surface engineering resulting in improvement in load capacity, wear resistance, the coefficient of friction etc.

One of the most successful applications in engineering is the improvement of tribological performance. Observations of the surface topography of some engineering surfaces have suggested that systematic patterning could lead to optimized behavior, as a logical development of the more random texturing achieved through processes such as abrasive finishing and honing. Different mechanisms may contribute towards better tribological performance.

1.2 Problem Statements

Extrusion is a bulk forming process commonly used to produce long and straight metal parts. This forming process is based on the plastic deformation of a material due to compressive and shears forces only. The shape of the cross-sections can be solid round, rectangular, to T shapes, L shapes and Tubes etc. The quality of extruded product depends on many technological factors and the proper die design. In order to obtain an appropriate shape, dimensional tolerances, improved surface quality, the fine homogenous structure and uniform mechanical properties on extrudates cross-section, the metal flow through the die opening must be as uniform as possible. Therefore, this research will work on to acquire the possibility surface texture of using die with micro-pits array were indented as a case study.

1.3 Objectives

The objectives of this study are:

- a) To compare the effect of micro-pits location on the extrusion load with different lubricant viscosity at the interface between tool and work-piece
- b) To analyze the surface roughness and grid pattern observation on friction between tool and work-piece

1.4 The Aims and Scope of the Investigations

The fundamental aim and scope of the investigation are

- a) The shape of micro-pit is diamond with size is in microns.
- b) The micro-pits were indented on the existence of die surface at two difference section. The plane existence of die surface use as a reference
- c) Two different viscosity of paraffin mineral oil as a lubricant were applied on the die surface.
- d) To analyze the effect of micro-pits and viscosity of lubricant on the extrusion load, surface quality of product extruded and friction between tool and workpiece.