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ABSTRACT 

Regarding thermal, mechanical and electrical properties, substantial 

prospective advances have been offered by Nanotube-reinforced polymers in 

comparison with pure polymers. This project studies the extent to which the effective 

stiffness of these materials can be influenced by the characteristic waviness of 

nanotubes embedded in polymers. In order to numerically determine how the 

mechanical properties of composite materials which are reinforced with carbon 

nanotube, are affected by nanotube waviness, a 3D element model of sinusoidal is 

applied. According to the obtained results, nanotube waviness causes a decrease in 

the effective modulus of the composite compared to the straight nanotube 

reinforcement. The degree to which this decrease happens depends on the ratio of the 

sinusoidal wavelength to the nanotube diameter. It is indicated from these results that 

nanotube waviness can be another mechanism which limits the modulus 

improvement of nanotube-reinforced polymers. Several different meshes have been 

applied on the model in order to predict its effect on the mechanical properties of 

composite. The results show that finding a proper mesh has significant role in 

evaluating the model. 
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ABSTRAK 

Mengenai sifat terma, mekanika dan elektrik, pendekatan substansial yang 

maju telah ditawarkan dengan polimer nanotube reinforced dengan diperbandingkan 

bersama polimer asli. Pengajian projek ini untuk mengkaji sejauh mana 

keberkesanan daripada bahan tersebut boleh dipengaruhi oleh cirri-ciri waviness 

nanotubes yang tertanam dalam polimers. Dalam keadah berangka untuk 

menentukan bagai mana sifat mekanik bahan komposit yang diperkuat dengan 

nanotube karbon, yang dipengaruhi oleh sifat waviness nanotube, model elemen 3D 

sinusoidal telah diterapkan untuk aplikasinya. Berdasarkan keputusan yang 

diperolehi, waviness nanotube menyebabkan penurunan modulus berkesan daripada 

komposit dibandingkan kepada penguatan nanotube lurus. Sejauh mana ia menurun, 

bergantung kepada nisbah daripada panjang gelombang sinusoidal dengan diameter 

nanotube. Hal ini ditunjukkan dari hasil yang waviness nanotube ini boleh menjadi 

mekanisme lain yang menyekat peningkatan modulus polimer nanotube reinforced. 

Beberapa cara mesh berbeza telah dilaksanakan pada sifat mekanik komposit. 

Keputusan kajian menunjukkan bahawa cara mencari mesh yang tepat merupakan 

peranan yang utama dalam menilai model dalam kajian ini.    
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

When a material is composed of one or more discontinuous phases 

incorporated in a continuous phase, it is termed a composite. The reinforced or 

reinforcing material (fiber) is usually termed the discontinuous phase and in 

comparison with the continuous phase, which is named the matrix, it is typically the 

harder and stronger phase. The mechanical properties of a composite have a strong 

dependency on the distribution of the reinforcing material, their properties and 

interactions with the matrix [1].  
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The fibers have been used as stiffening and strengthening agents since 800 

BC by ancient Egyptians who blended straw and clay to make reinforced bricks. This 

is one of the first documented examples in which a one dimensional, high-aspect-

ratio filler was applied to produce a composite which has higher stiffness and 

strength compared to the matrix material. In Mongolia natives made their bows out 

of animal tendons, wood and silk about 1300 AD, that is another instance of early 

fiber reinforced composites [2]. These and many others naturally occurring fibers for 

example sisal, hemp, kenaf, flax, jute and coconut were broadly employed for 

centuries, to create composites with improved mechanical properties. A number of 

natural fibers are still being in application in which recyclability of the part is vital.  

Significant research has focused on Carbon nanotubes (CNTs) as fiber since 

their discovery by Iijima in 1991 [3]. Carbon nanotubes have exceptional mechanical 

properties in addition to the exceptional electronic and thermal properties related 

with them [4]:  experimental and theoretical results which show strengths 10 to 100 

times greater than the strongest steel at a fraction of the weight and an elastic 

modulus larger than 1 TPa, in comparison with 0.2 TPa for steel and 0.07 TPa for 

aluminum [5]. Because of significant mechanical properties of Carbon nanotubes, 

most investigators have focused on applying them as reinforcement for different 

materials. Reinforcement of various matrices by the use of Carbon nanotubes has 

become a main research interest worldwide. Due to the size of the nanotubes, the 

challenges related with large filler particles (especially stress concentrations) are 

substantially reduced. Furthermore, no other filler shows such a high strength and 

stiffness integrated with a low density. Lately, analytical models and extensive work 

on reinforcement of polymer, ceramic, and metal matrices has been developed.  

Moreover, Carbon nanotubes have also been observed as reinforcement for 

traditional composite materials. The special mechanical properties of composite 
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materials have allowed them to increase their presence in the aeronautical industry in 

the last 20 years. 

Similar to the mechanical properties of the best metal alloys, composite 

materials have mechanical properties, but with about a third of the weight. 

Multilayered composite materials are efficiently used in structural parts traditionally 

reserved for metal alloys since they have special in-plane mechanical properties. 

Nevertheless, the relatively poor mechanical properties of the matrix and the 

fiber/matrix interfacial bond limit their use, in especially demanding applications. 

Table 1.1 and Figure 1.1 in which modern popular composites are compared with 

some typical metals in terms of their mechanical properties and density show that the 

interest in composites proved to be well-founded. 

Table 1.1 Comparison of mechanical properties of same popular composites and 

metals [6]. 
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Figure 1.1 Specific strength and stiffness of some popular composites and metals 

[7]. 

1.2 Objectives of the Project 

�

�

The objectives of this study can be summarized as follows: 

1) Modeling and simulation of composite material reinforced with curved fibers 

(Carbon nanotubes). 

2) To determine the macroscopic mechanical properties of Carbon nanotubes 

reinforced composite. 
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1.3 Scopes of the Project 

1) Generation of finite element models. 

2) Meshing the geometry of finite elements. 

3) Simulation of finite elements models.  

4) To investigate the behavior for different radii of curved fibers. 

1.4 Problem Statement 

Examining the effects of misalignment or waviness got started by 

theoreticians about 30 years ago, despite the fact that our models of fiber composites 

usually have straight fibers. Therefore, expressions for the modulus of composites 

including random initial alignment irregularities were developed by Bolotin in 1966 

[8]. He decreased these to sine waves, as later did Swift [9], who also calculated the 

resulting transverse forces. In addition, in discussing compressive failure of aligned 

fiber composites, by using a metallurgical analogy, Argon [10] showed that 

misalignments of fibers could initiate kinking failure in composites. Simultaneously 

Suarez et al. [11] separately came to the same conclusion in working with composite.  

Davis tracked individual fibers by sequential polishing of boron/epoxy in 

1974; it was the first time that actual measurements of fiber waviness were done 

[12]. Lately a pretty simple way to measure misalignments in unidirectional 
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composites was developed by Yurgarti [13], and Mrse and Piggott used this to set up 

a direct link between compressive strength and misalignment [14].  

In this project, the Carbon nanotube (CNT) is modeled as a sinusoidal fiber 

which is obtained directly from a finite element approach. This approximates the NT 

and the surrounding matrix as a continuum; in the paper whose results have been 

used in this work the nature of this assumption and its limitations and justification 

are discussed [15]. 

The main purpose of this work is to develop a macromechanics-based model 

that can be used to assess the effect of nanotube waviness on the mechanical 

properties of composite materials reinforced with carbon nanotube. 


