SPLICE SYSTEM IN EXTENDING THE PRECAST PRESTRESSED CONCRETE BEAM SPAN

MOHD NASIR BIN KAMAROL ZAKI

A project report submitted in partial fulfilment of the requirement for the award of the degree of Master of Engineering (Civil – Structure)

Faculty of Civil Engineering Universiti Teknologi Malaysia

NOVEMBER 2009

"This study is especially dedicated to my beloved Mommy and Daddy Brothers, Friends,

for everlasting love, care, and supports....."

ACKNOWLEDGMENT

Alhamdulillah, with the accomplishment of this project, the author would like to extend the special and greatest gratitude to the project supervisor, Assoc. Prof. Baderul Hiham bin Ahmad of Faculty of Civil Engineering, Universiti Teknologi Malaysia for his enthusiastic effort and concern. With his invaluable advice, guidance and encouragement, the author was able to complete this project.

The author gratefully acknowledges the cooperation of Ir. Abd. Rahman Salleh, Assistant Director of Bridge Unit, Public Work Department, Mr Isnin bin Hassan, Project Coordinator of ACPI Sdn. Bhd and Mr. Chee Lai Kong, Senior Technical Manager of Hume Concrete Sdn. Bhd during the data collection. I am also very thankful to all the technicians in structural laboratory especially Mr. Razalee, Mr. Zaaba, Mr. Azham, Mr. Zailani and collegues who had assisted me in preparation of specimens and conducting testing in laboratory. Deepest thanks also to loyal friends, Khairi, Fakri, Sham, Afiq, Wan, Nabilah, Teck Yee, Nazaruddin, Fairuz and Sheikh in completing the works.

I also owe a debt of gratitude to my family for their support and encouragements throughout my program and also in completing the writing of this project report. Finally, the author wishes to thank all those who have contributed in one way or another in making this project a possible one.

ABSTRACT

This project focuses on the use of splicing precast concrete beams to extend their span length. Precast prestressed concrete beams are economical solutions for many bridges, due to various restrictions such as weight and hauling length they are rarely used for spans greater than 40 m. This project was initiated by collecting the information from internet and technical reports of some bridge projects that have used spliced beam system. The experimental work has been carried out on three beams of 2.5 m span with different location of splice loaded to fail. The type of splice beam system used consisted of precast pretensioned beam joint together by post-tensioned method. The experimental results show the development at shear failures inclined the depth opposed with initial prediction to fail in flexure. Both spliced beam has achieved the ultimate load capacity. On the other hand, the actual load capacity for controlled beam was twice times higher than calculated. From this research, base on ultimate load failure, the spliced system applied for double spliced beam has succeeded to perform as calculated nominal beam. However, since the actual controlled beam perform better, and the splice beam fail unexpectedly in shear, the future research should focusing on the materials, location and type of splice section to improve the present research.

ABSTRAK

Projek ini menfokuskan kepada penggunaan sistem sambungan kepada rasuk konkrit prategasan untuk memanjangkan rentangnya. Ketika rasuk prategasan menjadi penyelesaian ekonomikal untuk pelbagai projek jambatan, namun kerana halangan seperti had berat dan panjang maksima di atas jalan raya, sistem ini menghadapi masalah untuk rentang melebihi 40 m. Projek ini berasaskan kepada pengumpulan maklumat dari internet dan laporan teknikal beberapa projek jambatan yang menggunakan sistem sambungan. Eksperimen telah dijalankan ke atas tiga rasuk 2.5 m dengan berbeza bilangan bahagian sambungan yang dikenakan beban secara berkala sehingga gagal. Jenis sambungan yang diaplikasi pada spesimen rasuk dalam ujian makmal adalah sistem pratuang prategasan yang dicantumkan dengan kaedah tegangan. Keputusan eksperimen menunjukkan kegagalan ricih lebih ketara pada garisan sambungan bertentangan dengan jangkaan awal agar ia gagal dalam lenturan. Rasuk yang mempunyai dua sambungan melepasi kapasiti beban maksima. Pada masa yang sama, rasuk yang dikawal gagal pada nilai dua kali ganda daripada nilai jangkaan. Berdasarkan kiraan kegagalan beban maksima, adalah didapati, rasuk yang mengaplikasi sistem sambungan ini berjaya bertindak seperti rasuk monolitik biasa. Namun, memandangkan rasuk kawalan sebenar bertindak jauh lebih baik daripada segi nilai kegagalan dan rasuk bersambungan gagal pada jenis ricih, kajian pada masa depan perlu menumpukan pada bahan, lokasi dan jenis sambungan yang lebih baik berbanding kajian sedia ada.

TABLE OF CONTENT

CHAPTER	TITI	LE	PAGE
	TITI	LE	i
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	ГКАСТ	v
	ABS	ГКАК	vi
	TAB	LE OF CONTENT	vii
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xii
	LIST	OF SYMBOLS	XV
	LIST	OF APPENDIX	xvii
1	INTI	RODUCTION	
	1.1	Introduction	1
	1.2	Problem Statements	2
	1.3	Objectives	3
	1.4	Research Scopes	4

2 LITERATURE REVIEW

2.1	Introd	luction		6
2.2	Desig	n Options	s for Extending Beams	7
	2.2.1	Materia	l Related Option	7
	2.2.2	Design	Enchancement	9
	2.2.3	Method	Using Post-Tensioning	13
	2.2.4	Spliced	Beam Construction	15
2.3	Defin	ition of S	pliced Beam	15
2.4	Type	of Spliced	d Beam	16
	2.4.1	Cast In-	Place	16
		2.4.1.1	Reinforced Splice	17
		2.4.1.2	Post-Tensioned Splice	18
		2.4.1.3	Stitched Splice	19
		2.4.1.4	Drop-in Splice	19
		2.4.1.5	Structural Steel Splice	19
		2.4.1.6	Epoxy-filled Post-tensioned	
			Splice	20
	2.4.2	Match-0	Cast	20
2.5	Typic	al Applic	ation for Spliced Girder	22
	2.5.1	Simple	Spans	22
	2.5.2	Continu	ious Spans	23
2.6	Haund	ched Syst	em	25
	2.6.1	Splicing	of Haunched Sections	25
2.7	Analy	sis and D	esign	26
	2.7.1	Section '	Туре	26
	2.7.2	Stressing	g Tendon	26
	2.7.3	Tendon	and Duct Spacing	27
	2.7.4	End Blo	ck	27
	2.7.5	Design S	Shear Resistance	29
	2.7.6	Design I	Formulae	30
	2.7.7	Design of	of Splice Section	31

3 RESEARCH METHODOLOGY

4

3.1	Introd	action			33
3.2	Litera	ure Review			35
3.3	Interv	ews			35
3.4	Analy	sis and Desig	n		35
	3.4.1	Design Assu	mptions		37
3.5	Mater	al			38
	3.5.1	Prestressing	Steel		38
	3.5.2	Grade of Co	ncrete		39
	3.3.3	Incremental	of Load		40
3.6	Prepa	ation of Spec	rimen		40
	3.6.1	Steelworks			40
	3.6.2	Concrete Wo	orks		44
	3.6.3	Grout For D	ucts		44
3.7	Exper	mental Progr	ramme		45
3.8	Testin	g Programme)		51
	3.8.1	Compressive	e Test		51
	3.8.2	Tensile Test			53
	3.8.3	Ultimate Ter	nsile Test		53
FIND	INGS /	AND SURVE	CYS		
4.1	Splice	System in B	ridge Projects		56
	4.1.1	Sky-Line Si	ngle Span Overpass, N	Nebraska	57
		4.1.1.1 Sys	tem Selection		57
		4.1.1.2 Brid	lge Construction		58
	4.1.2	Short Span S	Spliced Beam Bridge,	Ohio	61
		4.1.2.1 Sys	tem Selection		61
		4.1.2.2 Brid	lge Construction		62
	4.1.3	Application	of Splice System in A	cheh	65

		4.1.4 Bridge Over Railway, Kg Aur Gading,	
		Pahang	66
	4.2	Summary of Interviews	70
5	RES	ULT FROM LABORATORY TESTING	
	5.1	Splice Section Location	77
	5.2	Load-Deflection	79
	5.3	Cracking Behaviour	80
	5.4	Comparison with BS 8110	83
		5.4.1 Crack and Failure Section Evaluation	83
		5.4.1.1 Controlled Beam	83
		5.4.1.2 Single-Spliced Beam	84
		5.4.1.3 Double-Spliced Beam	84
		5.4.2 Ultimate Moment Capacity	85
		5.4.2.1 Two Strand Bonded	86
		5.4.2.2 One Strand Bonded, One Strand	87
		Unbonded	
		5.4.3 Shear Resistance Capacity	92
	5.5	Variation of Strain in Concrete	92
6	CON	ICLUSION AND RECOMMENDATION	
	6.1	Conclusion	94
	6.2	Recommendation	95
	REF	ERENCES	

APPENDIX

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Design Bursting Tensile Forces in End Blocks	28
3.1	The Concrete Mixture.	44
3.2	Grout Compressive Strength	45
3.3	The Sequence of Experimental Work Carried Out in the Lab	46
3.4	The Compressive Strength Result.	52
4.1	Question 1	70
4.2	Question 2 and 3	71
4.3	Question 4,5,6 and 7	72
4.4	Question 8	74
4.5	Question 9	74
4.6	Question 10	75
5.1	Stress Calculation Along The Beam Length	78
5.2	Test Results of Beam Failure for Deflection	80
5.3	Crack and Failure Evaluation According to BS 8110	85
5.4	Comparison of Test Results of Actual Beams with BS 8110	90
	(Ultimate Moment Capacity)	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Length and Weight Limits Lead to Splicing Longer	
	Spans	3
2.1	Beam Dimensions for PCI BT-72 Modifications	10
2.2	Beam Dimensions for Decked Bulb Tee	11
2.3	Bundled Strands at Bed	12
2.4	Combined Pre- and Post-Tensioning Strands	14
2.5	Reinforced Splice Layout	17
2.6	Cast in Place post Tensioned Splice	18
2.7	Structural Steel Splice	20
2.8	Machined Bulkhead and Applying Compression Across	
	Splice	22
2.9	Splice System Layout For Continuous Beam	24
2.10	D- Region by St Venant	28
2.11	Stresses at Splice Section of the Beam Specimens.	28
3.1	Project Methodology Flow Chart	34
3.2	Beam 1,2 and 3 Layout	37
3.3	Bar Bender	41
3.4	Bar Cutter	41
3.5	The Mould to Bend Shear Links	41
3.6	The Reinforcement Bar Arrangement for Controlled	
	Beam	42
3.7	The Reinforcement Bar Arrangement for Double Splice	
	Beam	42

3.8	The Reinforcement Bar Arrangement for Single Splice	
	Beam	43
3.9	End Block Reinforcement	43
3.10	Formwork Arrangement for Beam Casting and Stressing	47
3.11	Prestressing Process	47
3.12	Concrete Casting	48
3.13	Segmental-Beam	48
3.14	Splice Section	49
3.15	Post Tensioning	49
3.16	Beam Specimens After Stressing	50
3.17	End Block Condition	50
3.18	The Duct Filled Up with Grout.	51
3.19	Tensile Test Machine	53
3.20	Strand Failure	53
3.21	Ultimate Load Testing Machine	54
3.22	Testing Layout	55
4.1	General Layout of the 198 th – Skyline Drive Bridge	59
4.2	Center Segment Prior to Placement over Temporary	
	Towers	59
4.3	All Beam Segments Placed Over Piers and Temporary	
	Towers	60
4.4	Skyline Bridge, Douglas County, Omaha, Nebraska	60
4.5	Pier Segments were Secured with Temporary Tie Downs	63
4.6	End Span Segments were then Erected	63
4.7	Completion of Four Lines of Girders for Stage 1	64
4.8	High Main Street Bridge Ohio	64
4.9	Precast Segment About to be Launched	66
4.10	Plate Stitching Connected by Bolt	67
4.11	Plate Stitching Arrangement	68
4.12	Bridge Layout	69
5.1	Ultimate Load for Zero Tension at Splice Section	77
5.2	Load-Deflection Graph	79
5.3	Controlled Beam Failure	81
5.4	Single Spliced Beam Failure	81

5.5	Double Spliced Beam Failure	82
5.6	Location of Strain Gauge	92
5.7	Load-Strain Graph	93

LIST OF SYMBOLS

~		Coefficient of short term losses.
α	-	
β	-	Coefficient of long term losses.
A_{ps}	-	Area prestressing tendon (mm ²)
A_s	-	Area of strands (mm ²)
b_v	-	Breadth of the member (mm)
d	-	Effective depth (mm)
d_n	-	Depth to the centroid of compression zone (mm)
e	-	Eccentricity of the prestressing steel (mm)
f_{ci}	-	Concrete strength at transfer (N/mm ²)
f_{cu}	-	Concrete strength at service (N/mm ²)
f_{ct}	-	Flexural compressive stresses (N/mm ²)
f_{tt}	-	Flexural tensile stresses (N/mm ²)
f_{cp}	-	Design compressive stress at the centroidal axis due to prestress
		(N/mm^2)
f_{pu}	-	Tensile strength of strand (N/mm ²)
f_t	-	Maximum design principal tensile stress (N/mm²)
f_{cp}	-	Design compressive stress at the centroidal axis due to prestress
		(N/mm^2)
f_{pe}	-	Design effective prestress in the tendons after losses (N/mm ²)
F_{bst}	-	Bursting force (kN)
h	-	Height of section (mm)

Height of flange section (mm)

Moment of inertia of the section (mm⁴)

 h_f I

L - Length (m)

 M_o - Moment necessary to produce zero stress in the concrete at the

extreme tension fibre. (kNm)

Mu - Ultimate moment (kNm)

n - Number of strand

P - Prestressing force (kN)

 V_c - Shear resistance of the concrete (N/mm²)

 V_{cr} - Shear resistance of a section cracked in flexure (N/mm²)

 y_o - Half side of the end block (mm)

 y_{po} - Half side of the loaded area (mm)

 z_1 - Section modulus of top fibre (mm³)

 z_2 - Section modulus of bottom fibre (mm³)

LIST OF APPENDICES

APPENDICE	TITLE
A	Questionnaire for the Thesis
В	Bridge Detailing for Railway Overpass Bridge, Kg Aur
	Lipis, Pahang
C	Specimens Design Calculation
D	Detailing of Specimens
E	Ultimate Load Test Result

CHAPTER 1

INTRODUCTION

1.1 Introduction

A prestressed concrete structure has many advantages, such as delaying cracks, saving materials, reducing deflection, and has been widely or increasingly used in long span structures (Lin and Burns, 1982). However, these beams are still used infrequently for spans in excess of 40 meters. This upper limit of practical application exists for several reasons, including material limitations, structural considerations, size and weight limitations on beam shipping and handling and a general lack of information and design aids necessary to design longer spans using concrete beams.

Some designers, fabricators and contractors, however have successfully collaborated to extend span lengths for precast prestressed concrete beams to distances greater than 40 meters and expand their use to other applications not normally associated with precast prestressed concrete beam construction. Unfortunately, the methods used only for specific job, and the knowledge gained has not made widely available to use in similar projects.

1.2 Problem Statements

Among the issues faced by the engineers on design stages such as the needs to eliminate piers for safety, reducing the number of substructure unit to avoid certain unstable soil foundation, improve the aesthetics and minimize the structure depth

During construction, there are various issues especially for long span beam and involving large full-span beam. These will resulting problems in fabrication and handling, transportation, erection, access to the site, fabricator's facility and contractor's equipment.

Economical issues are priority in all construction. The issues on reduction of construction costs, reduction of fabrication time and also cost for temporary support system on the nominal structures are among the challenges for the engineers.

Figure 1.1: Length and weight limits on precast beams lead to splicing for longer spans

1.3 Objectives

The main focus of this research was to address issues related to the design and construction of spliced precast prestressed concrete beam. The products of this research project include the following:

- a) To investigate the options used for extending span ranges of precast prestressed concrete beam current projects and data.
- b) To demonstrate the effectiveness of spliced beam method through the smaller scale laboratory work.
- c) To examine the cracking type and failure occur in spliced beam system.

1.4 Research Scopes

The literature review and information address the full spectrum of possible approaches for extending the span ranges of precast prestressed concrete beams. Although this wide focus was retained for portions of the research, it was determined that narrowing the focus of the study would provide the greatest benefit. This decision was based on the following findings from the early stages of the research:

a) Most of the techniques and approaches for extending span ranges involve incremental changes in conventional design methods and materials. These changes generally result in relatively small increases in the span range for precast prestressed concrete beams. Information required to implement these techniques is generally available in the literature or from commercial sources.

- b) One technique, the splicing of beams, was found to allow significantly increased span ranges for precast prestressed concrete beams bridges. This technique involves the fabrication of the beams in segments that are then assembled into the final structure. Although many spliced beam bridges have been constructed, the use of this technique is not widespread. Use of this technology also requires consideration of various issues with which the designer of conventional precast prestressed concrete beams typically is not familiar. Furthermore, the information available in the literature regarding the implementation of spliced beam construction is limited.
- c) The laboratory work consist smaller scale precast prestressed concrete beams with a splice section.
- d) The issues regarding this research were from Public Work Department (PWD), fabricator and main player of precast prestressed concrete industry, Hume Engineering Sdn. Bhd and ACPI Sdn. Bhd.

Based on these findings, it was determined that the main focus of this study would be to address issues related to splicing method in extending span for prestressed concrete beam.