MICROSTRIP ANTENNA ARRAY FOR SATELLITE COMMUNICATION OPERATING AT 12GHZ

MIMI FAISYALINI BINTI RAMLI

A project report submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical-Electronics & Telecommunication)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2009

With love to my parents, Haji Ramli Hambali and Hajjah Rosemini Joji, Angah, Achik and Adik Haji...

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the Most Gracious, Most Merciful in giving us strength and patience in accomplishing this project successfully. This work was written in faith, support, advice and help from many people.

I would like to express my sincere gratitude and appreciation to my supervisor, Associate Prof. Dr. Mohamad Kamal A. Rahim, for his support, guidance and encouragement in the duration of the work preparation until its completion.

A special thanks to a number of people, who for one reason or another, helped to make this happen: Azreen, Wan Mustafa, Saiful, Rina, Faezah, coursemates, researchers, neighbours and friends. I am also very thankful to Fakulti Kejuruteraan Elektrik, Universiti Teknologi Malaysia, Universiti Teknologi MARA and STRIDE for the technical support

Last but not least, my deepest appreciation and love goes to my parents and brothers who have always be with me during my sorrow and happiness.

Thank you.

ABSTRACT

Studies on the microstrip antenna array has been conducted with the objective to design, simulate and fabricate the microstrip antenna array operating at 12GHz, Ku band downlink. Microstrip antenna is well known for its low cost, compact and mechanically robust. This project explores the capability of the microstrip antenna array at a higher frequency for the satellite communication. Specification is defined and the designed antenna should be able to operate with minimum gain of 20dBi, <-10 return loss, 3 to 5 percent bandwith with circular polarization. Simulation started with the basic single element antenna in getting the correct geometrical parameters and feeding technique. Simulation was done step by step prior obtaining the final design of antenna. The final design which complies to the specification was selected for fabrication and measurement, whereby in this case (16x16) array was selected. Fabrication was done successfully, however the performance comparison shows some variation between simulation and antenna measurement. There are many factors contributing to the variation which has been discussed in Chapter 5 of this writings. This project work has shown a big potential of microstrip antenna array in satellite communication, at a higher frequency. Further effort and follow ups will enhance the performance of the microstrip antenna and lessen the impact of the shortcomings.

ABSTRAK

Objektif projek adalah untuk merekabentuk, melakukan simulasi dan fabrikasi antenna yang berfungsi dalam jalur Ku (Ku band downlink) pada frekuensi 12GHz. Microstrip Antenna telah diketahui umum melibatkan kos yang rendah, kompak dan kurang dipengaruhi gangguan mekanikal. Projek ini adalah eksplorasi kebolehan *microstrip antenna* pada frekuensi tinggi. Spefikasi yang ditentukan adalah melibatkan gain, return loss, bandwidth dan polar. Gain minimum hendaklah mencapai 20dBi, return loss minimum pada -10dB, bandwidth 3 hingga 5 peratus dan antenna hendaklah beroperasi secara *circular*. Simulasi bermula dengan antenna yang mempunyai satu elemen sahaja, bertujuan untuk memperolehi ukuran patch dan feeding teknik yang betul. Simulasi berperingkat dijalankan sebelum mendapatkan rekabentuk terakhir antenna. Rekabentuk terbaik yang memenuhi spesifikasi akan dipilih untuk fabrikasi dan pengukuran. Bagi projek ini rekabentuk terbaik ialah (16x16) array. Fabrikasi telah berjaya dijalankan, walaubagaimanapun terdapat perbezaan pada keputusan pengukuran berbanding simulasi. Perbezaan ini disebabkan banyak faktor yang akan diperbincangkan dalam Bab 5. Projek ini telah membuktikan bahawa microstrip antenna array mempunyai potensi yang tinggi dalam aplikasi komunikasi satelit pada frekuensi tinggi. Kajian yang lebih terperinci diperlukan untuk memperbaiki mutu dan kebolehan microstrip antena dan sekaligus mengurangkan kelemahan antena ini.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	STUDENT DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	XV

1	INT	RODUCTION	1
	1.1	Project Background	1
	1.2	Research Objective	3
	1.3	Scope of Project	3
	1.4	Thesis Outline	4
	1.5	Summary	5
2	LITH	ERATURE REVIEW	6
	2.1	Basic Concept of Microstrip Patch Antenna	6
	2.2	Feeding Technique	8
	2.3	Polarization	16

2.4	Design Procedure	17
2.5	Summary	20

3.	MIC	ROSTRIP ANTENNA DESIGN	
	МЕТ	THODOLOGY	21
	3.1	Introduction	21
	3.2	Antenna Specification	23
	3.3	Antenna Design Equation	26
	3.4	Antenna Design Parameters	28
	3.5	Summary	30
4.	ANT	ENNA SIMULATION AND FABRICATION	31
	4.1	Introduction	31
	4.2	Simulation Progress	32
	4.3	Fabrication Process	33
	4.4	Summary	41
5.	RESU	JLTS, ANALYSIS AND DISCUSSION	42
	5.1	Introduction	42
	5.2	Simulated Results and Analysis	43
	5.3	Single Element Antenna	43
	5.4	Microstrip Antenna Array (2x2)	48
	5.5	Microstrip Antenna Array (4x4)	51
	5.6	Microstrip Antenna Array (8x8)	53
	5.7	Microstrip Antenna Array (16x16)	55
	5.8	Discussion on the Simulation Result	59
	5.9	Measurement	60

	5.10	Summary	62
6.	CONCLUSIC	DN	63
	6.1	Conclusion	63
	6.2	Proposed Future Work	65

REFERENCES

ix

66

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Defined Antenna Specification	23
3.2	Single Patch Antenna Geometrical Parameters	30
5.1	Antenna Parameterization for Single Patch (1x1)	44
5.2	Summary of the Antenna Simulation Results	60

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Basic Structure of Microstrip Patch Antenna	6
2.2	Common Patch Shape	7
2.3	Schematic Diagram of Edge-Fed Microstrip Patch Antenna	9
2.4	Coaxial Line Feed	11
2.5	Schematic Diagram of Probe-Fed Microstrip Patch Antenna	12
2.6	Schematic Diagram of Aperture-Coupled Microstrip Patch Antenna	13
2.7	Schematic Diagram of Proximity-Coupled Microstrip Patch Antenna	15
2.8	Orthogonal/Trimmed Square Patch Antenna	17

2.9	Basic Top View of Microstrip Patch Antenna	18
3.1	Flowchart of the Microstrip Antenna Development	22
3.2	Circular Polarization with Thin Slot on Patch	25
3.3	Circular Polarization by Trimming Opposite Corners Of the Square Patch (L=W)	25
3.4	Elliptical With Tab	26
3.5	Single Patch Antenna Dimension Description	29
3.6	Single Patch Antenna with Dimension	29
4.1	Simulation Flow Chart	33
4.2	Fabrication Flow Chart	34
4.3	Antenna Template	35
4.4	Washing Machine	35
4.5	UV Exposure Process	36
4.7	Rinsing	37

4.8	Etching	38
4.9	Rinsing After Etching	39
4.10	Stripping	39
4.11	The Backside View of the Port	40
4.12	The (16x16) Microstrip Antenna	41
5.1	Antenna Parameterization for Single Patch (1x1)	44
5.2	S11 Analysis for Single Element Antenna (1x1)	45
5.3	Farfield Analysis for Single Element Antenna	46
5.4	E-field Analysis for Single Element Antenna	47
5.5	(2x2) Microstrip Antenna Array	48
5.6	S11 Analysis for (2x2) Array	49
5.7	Farfield Analysis for (2x2) Array	50
5.8	(4x4) Microstrip Antenna Array	51
5.9	S11 Analysis for (4x4) Array	51

5.10	E-field Analysis for (4x4) Array	52
5.11	(8x8) Microstrip Antenna Array	53
5.12	S11 Analysis for (8x8) Array	53
5.13	Farfield Analysis for (8x8) Array	54
5.14	(16x16) Microstrip Antenna Array	55
5.15	S11 Analysis for (16x16) Array	56
5.16	Farfield Analysis for (16x16) Array	57
5.17	E-field Analysis for (16x16) Array	58
5.18	Network Analyzer Measurement Result	61

LIST OF SYMBOLS

f	-	Operating frequency
f_c	_	Cut off frequency
Z_o	-	Characteristic impedance
E _r	-	Dielectric constant
€ _{eff}	-	Effective dielectric constant
E ₀	-	Dielectric constant in free space
μ_o	-	Permeability in free space
h	-	Thickness of the substrate
δ	-	Loss tangent
λ_o	-	Wavelength in space
с	-	Velocity of light in free space
W_{f}	-	Feed Width
L	-	Patch length
W	-	Patch width

CHAPTER 1

INTRODUCTION

1.1 Project Background

An antenna serves as the transition between the RF front-end circuitry and the radiation and propagation of electromagnetic waves in free space. Antennas play a critical role in microwave and other wireless applications systems. Planar oriented antennas, such as microstrip patch and printed dipole have attracted significant attention among antenna engineers due to the tremendous benefits they bring to modern wireless systems in comparison to more conventional designs.

Microstrip patch antennas were first proposed in the early 1970s and since then, a lot of activity in this area of antenna engineering has occurred, probably more than in any other field of antenna research and development. The microstrip antenna is probably the simplest yet most popular planar antenna. In its simplest form, the patch antenna can be realized by etching a rectangular metal pattern on a dielectric substrate. It has several well-known advantages over other antenna structures, including their low profile and hence conformal nature, light weight, low cost of production, robust nature, and compatibility with microwave monolithic integrated circuits (MMICs) and optoelectronic integrated circuits (OEICs) technologies. Because of these merits, forms of the microstrip patch antenna have been utilized in many applications such as in satellite communication, mobile communication base stations, and even mobile communication handset terminals. Microstrip antenna is one of the common antenna elements in telecommunications and radar applications. Microstrip antenna has the advantage of light weight, low volume, low profile, low fabrication cost (can be made of FR4 board), supports multiple polarization, easy integration with microwave integrated circuits (MICs), capable of multi - frequency operations and mechanically robust.

Besides the advantages, microstrip patch antenna has its own disadvantages in bandwidth limitation (i.e narrow bandwidth), has low radiation efficiency, low gain, suffer from spurious radiation of feeds and junctions, poor end fire radiator, low power handling capability and vulnerable to surface wave excitation.

The aim of the project is to explore the capability of the microstrip antenna in satellite communication with concern of its advantages and disadvantages.

1.2 Objectives

This research is concentrating on the concept and application of microstrip antenna in satellite communication. The studies will include the single element as the fundamental and continue with the antenna array design. The bottom line is to design, simulate and fabricate the microstrip antenna array for satellite communication operating at 12GHz, Ku band downlink respected to the specification. It is expected that the design should lessen the drawback effects of the antenna in satellite communication application

1.3 Scope of Project

This research mainly concentrates on the design, simulation and fabrication of the microstrip antenna array at 12 GHz Ku band downlink with <-10 dB return loss, gain better than 20dBi and linear polarization. There are nine elements in the scope to be carried out as per below details:

- Literature on the concept of microstrip patch antenna. Review on previous work related to microstrip patch antenna
- Single element antenna design and simulation
- Design and simulation of patch microstrip antenna array operating at frequencies 12GHz

- Analysis of the properties and performance of the patch microstrip antenna (single unit and antenna arrays) based on the simulation result for benchmarking.
- Optimization of the antenna design to fulfill antenna specification or performance requirements.
- Fabrication of the selected antenna design
- Test and measurement of the fabricated antenna
- Analysis, discussion and assessment on the antenna array properties and performance according to specification and performance requirement.
- Final report and presentation

1.4 Thesis Outline

This thesis is organized into six chapters. Chapter 1 provides an overview on the background of the project, the objective, scope of project and motivation.

Chapter 2 covers the literature review on the research works conducted on the design and implementation of various microstrip antenna designs. The focus is on the current work on the proximity coupled feeding techniques. This chapter highlights the advantages and disadvantages of proximity coupled microstrip antenna.

Chapter 3 focuses on the antenna design methodology which covers the calculation of antenna parameters and step by step design procedures.

Chapter 4 discusses on antenna simulation software (Microwave Office) and antenna fabrication process, antenna measurement setup and measured results.

Chapter 5 focuses on the presentation of the simulated and measured results together with antenna performance analysis.

Lastly, Chapter 6 summarizes the all the works that has been performed during the project execution. Conclusion is rolled to inclusive of achievements, shortcomings and future work recommendation.

1.5 Summary

The motivation of this project is to explore and enhance the operational capability of the microstrip antenna array specifically for operation in the Ku band, operating at 12 GHz downlink. By applying the microstrip design and considering the advantages, it is expected to have better gain with lower costs, light, less mechanical limitation distraction, more innovative and compatible antenna in satellite communication.

REFERENCES

- 1. Balanis, C.A. (1997). *Antenna Theory: Analysis and Design*. 2nd Ed. New York: John Wiley and Sons.
- 2. Rod Waterhouse (2002). "Microstrip Patch Antennas", RMIT University
- Wan Mustafa Wan Hanafi (2009). "Comparative Study Between Proximity Coupled Square And H-Shape Microstrip Patch Antenna," Universiti Teknologi Malaysia, Master Thesis.
- 4. Zuraidah Binti Harith . "Design Of aA Circular Polarization Microstrip Antenna at 2.4GHz," Universiti Teknologi Malaysia, Master Thesis.
- 5. Adel Bedair Abdel Mooty Abdel Rahman (2006). "Design and Development of High Gain, Wideband Microstrip Antenna & DGS Filters Using Numerical Experimentatiom Approach", Fakultät Elektrotechnik und Informationstechnik der Otto-von-Guericke-Universität Magdeburg
- M I Ali K Ehata and S Ohshima (2000). "Single-feed superconducting circularly polarized microstrip array antenna for direct-to-home receiving system", Faculty of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan.
- Osama Ullah Khan. "Design of X-band 4x4 Butler Matrix for Microstrip Patch Antenna Array", IEEE, Electronic Engineering Department, NED University of Engineering & Technology.

- Hongqing Li and Donglin Su." The Bandwidth Enhancement Method of Rectangle Patch Antenna Used in Satellite Communication", Shool of Electronic Information Engineering, Beijing University of Aeronautics & Astronautics, Beijing IO0083, China.
- P. Daniel, Professor. "Design Of Low Cost Printed Antenna Arrays," University de Rennes I, 35042 Rennes Cedex, France.
- Pozar, D.M., and Kauffman, B. (1987). "Increasing Bandwidth of a Microstrip Antenna by Proximity Coupling." Electronics Letters, Vol. 23, No. 8, pp. 368-369.
- Pozar, D.M. (1992). "Microstrip Antenna," *Proceedings of the IEEE, Vol. 80, No 1.* January, IEEE: 79 – 91
- Pozar, D.M. (1995). "A review of Bandwidth Enhancement Techniques for Microstrip Antennas", pp. 157 – 166. in D.M. Pozar and D.H. Schaubert, editors, Microstrip Antennas, New York, IEEE Press.
- Harith Yussof, Nur Ayu Zalina Zakaria, Ahmad Asari Sulaiman (2006).
 "Design of Inset-Fed Microstrip Rectangular Truncated Array Antennas," Universiti Teknologi Mara.
- 14. <u>www.rogerscorporation.com</u>
- 15. <u>http://books.google.com/books/Handbook</u> of Microstrip Antenna
- 16. <u>www.microstripantenna.Chapter4,"Microstrip</u> Patch Antenna design and Results,"
- Solbach, K., and Litschke, O., "Patch-Array-Antenna Feed Network Providing Bandwidth Improvement," Gerhard-Mercator-Universität Duisburg, Fachgebiet Hochfrequenztechnik, Bismarckstraße 81, 47048 Duisburg.