SOIL-ROOT INTERACTION AND EFFECT ON SLOPE STABILIZATION

IMAN FARSHCHI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Geotechnics)

Faculty of Civil Engineering University Technology Malaysia

NOVEMBER 2009

INTERAKSI TANAH-AKAR KESAN KEPADA KESTABILAN CERUN

IMAN FARSHCHI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Geotechnics)

> Fukulti Kejuruteraan Awam Universiti Teknologi Malaysia

> > NOVEMBER 2009

Dedicated To Almighty GOD To My beloved father and mother, brother and sisters, friends

y beloved jainer and motner, brother and sisters, jrief For your love and support

ACKNOWLEDGMENT

First of all, I want to give thanks to Almighty God who is my source of wisdom and my provider.

I want to thank my supervisor Dr. Nazri Bin Ali who has guided me so patiently in completing this project. Without his, this project would not be completed in time and smoothly. His dedication, patience and continues assistances have led me to strive for better achievement in this project.

Besides that, my sincere appreciation also extends to my family and friends specially and for their support and encouragements throughout my program and also in completing the writing of this project report.

Finally, the author wishes to thank all those who have contributed in one way or another in making this project a possible one.

ABSTRACT

The use of vegetation for preventing and controlling erosion for slope stabilization has being practiced throughout the world. This disciplines has recently gained a global recognition and was given a new entity "Ecological Engineering" defined as the design of sustainable ecosystem that integrate human society with its natural environment for the benefit of both. This soft approach of stabilizing slope confers numerous advantages, including high biodiversity, low maintenance, selfsustainability as well as being environmental-friendly.

There are various conventional methods used to improve stability of slope, they all have merit and demerit, but the use of vegetation has other advantages as mentioned above plus root do not corrode, they are self-repairing, regenerating and adaptive. This gives the motivation to carry out this research; so as to gain more understanding on its soil-root interaction and effects on slope stabilization. The mechanical and hydrological effect of vegetation would be combined and their overall effect on slope stability stabilization and analyses would be evaluated.

ABSTRAK

Penggunaan tumbuhan bagi mengatasi masalah tanah runtuh bagi cerun tanah dipraktikkan secara meluas di seluruh dunia. Disiplin ini telah diiktiraf dunia dan diberikan satu entity iaitu "kejuruteraan ekologi" yang membawa maksud keseimbangan ekosistem yang mengintegrasikan manusia dan alam semulajadi untuk kebaikan bersama. Kaedah ini memberikan banyak kebaikan antaranya biodiversiti yang rendah, pengekalan yang kendiri dan mesra alam.

Terdapat pelbagai kaedah bagi memperbaiki kestabilan cerun dan ianya mempunyai kebaikan dan keburukan yang tersendiri. Penggunaan tumbuhan memberi kebaikan seperti akarnya yang tidak mudah terhakis, penumbuhan yang kendiri dan fleksibel. Ini memberikan motivasi untuk menjalankan kajian ini dan untuk mengetahui interaksi tanah-akar dengan kesan kestabilan cerun. Kesan mekanikal dan hidrologi bagi tumbuhan akan digabungkan dan kesan secara keseluruhannya akan kestabilan akan dianalisis dan dinilai.

TABLE OF CONTENTS

CI	HAPTER	TITLE	PAGE
	DECLARATIO	DN	i
	DEDICATION		iii
	AKNOWLEDO	GMENTS	iv
	ABSTRACT		V
	ABSTRAK		vi
	TABLE OF CO	ONTENTS	vii
	LIST OF TAB	LES	X
	LIST OF FIGU	JRES	xii
	LIST OF SYM	BOLS	xiii
	LIST OF APEN	NDICES	XV
1.	INTROUDUCT	ION	
	1.1. Background of study		1
	1.2. Statement of research p	problem	2
	1.3. Aim and objectives		2
	1.4. Scope of the research		3
	1.5. Significant of research		4
2.	LITERATURE	RIVIEW	
	2.1. Preamble		5
	2.2. Boulder clay		6
	2.3. Slopes		7
	2.3.1. Cause of slope f	ailures	8

2.3	3.1.1. Triggering factors	9
2.3	3.1.2. Contributory factors	10
2.3.2.	Mechanism of slope failure	11
2.3.3.	Slope mitigations	13
2.4. Vegetation on slope		14
2.4.1.	Root system	15
2.4.2.	Mature lime tree(Tilia)	16
2.5. Mechanical effect		17
2.5.1.	Root reinforcement	17
2.5.2.	Root aria ratio	20
2.5.3.	Root tensile strength	21
2.5.4.	Anchorage, arching and buttressing	22
2.5.5.	Surcharging	22
2.5.6.	Wind loading	23
2.6. Hydrological effect		23
2.6.1.	Rainfall interception	23
2.6.2.	Surface water runoff	24
2.6.3.	Infiltration	24
2.6.4.	Evaporation and transpiration	25

RESEARCH METHODOLOGY

3.

3.1. Research design and procedure	
3.1.1. Hydrological effect of vegetation	
3.1.1.1. Soil properties	28
3.1.1.2. Numerical representation	28
3.1.2. Mechanical effect of vegetation	30
3.1.3. Combine the mechanical and hydrological	
effect of vegetation	31
3.2. Operational framework	
3.3. Assumption and limitation	
3.4. Conclusion	

4. ANALYSIS AND RESULTS

4.1.1. Assumption 1	35	
4.1.2. Assumption 233	36	
4.1.3. Other equation used in SLIP4EX	38	
4.1.4. Effects of Reinforcement, Vegetation and Hydrauli	ic	
Changes	39	
4.1.5. Matric Suction Addition to SLIP4EX	41	
4.2. SLIP4EX	43	
4.2.1. SLIP4EX spread sheet 1	43	
4.2.1.1. Enter slice information	44	
4.2.2. SLIP4EX Spread Sheet 2		
(Including the Effect of Vegetation)	45	
4.2.2.1. Tensile Root Strength Contribution, T	46	
4.2.2.1.1. Estimation of Available Root		
Reinforcement Force	48	
4.2.2.1.2. Calculation of Available Root ForceT,		
Acting on Each Slice	49	
4.2.2.2. The Effective Angle between the		
Operational Roots and the Slip Surface, Θ	50	
4.2.2.3. Additional Effective Cohesion at		
Base of Slice due to Vegetation, c'v	51	
4.2.2.4. The Mass of Vegetation, W_v	52	
4.2.3. Results	52	
4.2.3.1. Tree at the toe of slope	53	
4.2.3.2. Tree at the middle of slope	55	
4.2.3.3. Tree at the crest of slope	56	
4.2.4. Summary of results	57	
5. CONCLUSION AND SUGGESTION		
5.1. Conclusion	61	
5.2. Suggestion	62	
REFRENCES	63	
APPENDICES A-H		

LIST OF TABLES

TITLE	PAGE
Material properties	28
Slice data	44
Tensile root strength	50
Comparisons different factor of safety calculated	
with different methods with and without effect	
of the tree when tree located at the toe of the slope	54
Comparisons different factor of safety calculated	
with different methods with and without effect of	
the tree when tree located at the middle of the slope	55
Comparisons different factor of safety calculated	
with different methods with and without effect of	
the tree when tree located at the crest of the slope	56
Comparisons different factor of safety and their	
differences with the no effect of tree condition	
calculated with Greenwood general method with the	
different place of tree	57
Comparisons different factor of safety and their	
differences with the no effect of tree condition	
calculated with Greenwood general (k as input)	
method with the different place of tree	58
	Material propertiesSlice dataTensile root strengthComparisons different factor of safety calculatedwith different methods with and without effectof the tree when tree located at the toe of the slopeComparisons different factor of safety calculatedwith different methods with and without effect ofthe tree when tree located at the middle of the slopeComparisons different factor of safety calculatedwith different methods with and without effect ofthe tree when tree located at the middle of the slopeComparisons different factor of safety calculatedwith different methods with and without effect ofthe tree when tree located at the crest of the slopeComparisons different factor of safety and theirdifferences with the no effect of tree conditioncalculated with Greenwood general method with thedifferences with the no effect of tree conditioncalculated with Greenwood general (k as input)

4.8	Comparisons different factor of safety and their	
	differences with the no effect of tree condition	
	calculated with Greenwood simple method with the	
	different place of tree	59
4.9	Comparisons different factor of safety and their	
	differences with the no effect of tree condition	
	calculated with Swedish method with the	
	different place of tree	60

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

3.1	Slope geometry	27
3.2	Water Retention Curve for Boulder Clay	28
3.3	Hydraulic Conductivity for Boulder Clay	29
3.4	Finite Element Mesh	29
4.1	Limit equilibrium slope stability analysis by	
	'Method of Slices' – Dimensions and parameters	
	assigned for each slice	34
4.2	Forces associated with each slice	35
4.3	Additional forces due to vegetation, reinforcement	
	and hydrological changes	40
4.4	Limit equilibrium slope stability analysis by	
	'Method of Slices' – Dimensions and parameters	
	assigned for each slice	43
4.5	Forces associated with each slice	44
4.6	Additional forces due to vegetation, reinforcement	
	and hydrological changes	45
4.7	Root Zone of lime tree	53
4.8	Tree Located at the toe of slope	53
4.9	Tree located at the toe of slope	54
4.10	Tree located at the middle of slope	55
4.11	Tree located at the crest of slope	56

LIST OF SYMBOLS

Basic parameters and dimensions used in stability analysis by method of slices

В	-	width of slice (m)
c'	-	effective cohesion at base of slice (kN/m ²)
F	-	factor of safety (usually shear strength/shear force on slip plane)
F_f	-	factor of safety in terms of horizontal force equilibrium (ratio)
Н	-	average height of slice (m)
h_w	-	average piezometer head at base of slice (m)
h_{wl}	-	height of free water surface at left-hand side of slice (m)
h_{w2}	-	height of free water surface at right-hand side of slice (m)
l	-	length (chord) along base of slice (m)
и	-	average water pressure on base of slice (kN/m ²)
U_l	-	water force on left-hand side of slice (kN)
U_2	-	water force on right-hand of slice (kN)
W	-	total weight of soil in slice (kN)
A	-	inclination of base of slice to horizontal (degree)
Г	-	bulk unit weight of soil in slice (kN/m ³)
γ_w	-	unit weight of water (kn/m ³)
φ́	-	effective angle of friction at base of slice (degrees)

Vegetation, reinforcement and hydrological effect

c'_{v}	-	additional effective cohesion at base of slice (kN/m^2)
δh_w	-	increase in average piezometer head at base of slice (m)
δh_{wl}	-	increase in free water surface at left-hand side of slice (m)

δh_{w2}	-	increase in free water surface at right-hand side of slice (m)
δU_l	-	increase in water force on left-hand side of slice (kN)
δU_2	-	increase in water force on right-hand side of slice (kN)
δu_v	-	increase in average water pressure at base of slice (kN/m^2)
D_w	-	windthrow force (kN)
F_r	-	factor of safety applied to ultimate root force to reflect uncertainly in
		root distribution and assumptions made
Т	-	tensile root or reinforcement force on base of slice (kN)
T_{rd}	-	available (design) root force per square meter of soil on a particular
		plane (kN/m ²)
T_{ru}	-	ultimate roof force per square meter of soil (kN/m ²)
W_{v}	-	increase on weight of slice due to vegetation (or surcharge) (kN)
В	-	angle between wind direction and horizontal (degrees)
θ	-	angle between direction of T and base of slip surface (degrees)

LIST OF APPENDICES

APENDIX

TITLE

PAGE

А	Blank page of spread sheet 1 in SLIP4EX	70
В	Input data and output results of SLIP4EX	
	analysis showing calculated forces on each	
	slice of the analysis and comparisons of factor	
	of Safety calculated by different methods	72
С	Blank page of spread sheet 2 in SLIP4EX	74
D	Input vegetation data and output results of SLIP4EX	
	analysis showing calculated vegetation forces on each	
	slice of the analysis and change to the factor	
	of Safety calculated by different methods when	
	tree located at the toe of slope	76
Е	Input vegetation data and output results of SLIP4EX	
	analysis showing calculated vegetation forces on each	
	slice of the analysis and change to the factor	
	of Safety calculated by different methods when	
	tree located at the middle of slope	78
F	Input vegetation data and output results of SLIP4EX	
	analysis showing calculated vegetation forces on each	
	slice of the analysis and change to the factor	
	of Safety calculated by different methods when	
	tree located at the crest of slope	80
G	Notation for slope stability analysis by the method	
	of slices	82

Η

xvi

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The use of vegetation for preventing and controlling erosion for slope stabilization has being practiced throughout the world (Normaniza et al, 2006). The importance of a vegetative cover is demonstrated by the effects of its removal as pointed out by Ziemer et al (1977), Ziemer (1978) and Wu at al (1979). This disciplines has recently gained a global recognition and was given a new entity "Ecological Engineering" defined as the design of sustainable ecosystem that integrate human society with its natural environment for the benefit of both. This soft approach of stabilizing slope confers numerous advantages, including high biodiversity, low maintenance, self-sustainability as well as being environmental-friendly (Normaniza et al, 2006).

There are various conventional methods used to improve stability of slope, they all have merit and demerit, but the use of vegetation has other advantages as mentioned above plus root do not corrode, they are self-repairing, regenerating and adaptive. This gives the motivation to carry out this research; so as to gain more understanding on is soil-root interaction and effects on slope stabilization. The mechanical and hydrological effect of vegetation on slope stability stabilization and analyses would be evaluated.

There are Malaysian Publications as well as research papers from other parts of the world which would be used as primary source of theoretical literature on use of vegetation on slope stability and analysis.

1.2 Statement of Research Problems

Empirical data as regards to root characterization, soil moisture and orientations as well as other mechanical and hydrological effects of vegetation on slope are still far from sufficient. The important of vegetation in slope stabilization and surface erosion control is enormous. It is cheap, environmentally friendly, same plant exhibit different characteristic when growing in different environment because of their biodiversity. Hence, need to select native specie to investigate its mechanical and hydrological effects on the slopes. The mechanical and the hydrological effect would be combined and their overall effect on finite slope would be determined. The need for more work on bonding characteristics in soilroot interaction and effects on slope stabilization is inevitable.

1.3 Aim and Objectives

The research is aimed towards the determination of soil-root interaction and effects on slopes stabilization.

The following specific objectives are to be achieved:

- 1. To illustrate the effect of moisture and root on shear strength of soil.
- 2. To obtain the transpiration rate, root geometry, wind effect and weight of the tree.
- 3. To determine the failure mechanism of root during shear.
- 4. To assess overall the mechanical and simulate hydrological effects of root on finite slope.
- To establish the contribution of root-reinforcement on finite slope using in SLIP4EX Programming.

1.4 Scope of the Research

The study will be carried out within the United Kingdom and its environs. It is located on longitude 8^{0} W 2'E and latitude 49^{0} 59'N with temperate climate with plentiful rainfall all year round.

The research will be limited to:

- 1. The plant to be use in this research is *mature lime tree* (Tilia), the transpiration rate, weight; root geometry of the tree shall be used.
- Determination of mechanical properties of root using Greenwood (2004) in ECOSLOPE project.
- 3. Boulder clay soil would be used.

4. Mechanical effect of tree on finite slopes using SLIP4EX computer program.

1.5 Significant of Research

This research intent to bridge the gap existing on severe lack of empirical data on effects of vegetation on slope stabilization and analysis. The unique significant is the combination of mechanical and the hydrological effects of vegetation on slopes and its effects to slope stability, analysis and stabilization. The overall effects of vegetation both mechanical and hydrological on finite slope stability and analysis to stabilization would be quantified.