INTERFACIAL REACTIONS BETWEEN LEAD- FREE SOLDERS AND ELECTROLESS NICKEL/ IMMERSION GOLD (ENIG) SURFACE FINISH

BOO NAN SHING

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Materials Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > November 2010

To my beloved wife and family. Thank you for your endless love and support......

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to thank my project supervisor, Associate Professor Dr. Ali Ourdjini for his technical guidance, encouragement and motivation. Without his supervision and patience, I would not have been able to walk through all the difficulties that I have met.

My special thanks go to PhD research students, Ms Siti Rabiatull Aisha and Saliza Azlina Othman for their kind support, guidance and advise throughout this project. I shall never forget their unreserved assistance and encouragement they have provided.

My further appreciation to all Material Science Laboratory staff, Mr. Ayub, Mr. Azri, Mr. Jefri and others for providing the hardware and technical support required for this research. Without their assistance, it would not have been possible for me to complete this project.

Last but not least, the successful completion of this project would have been impossible without the contribution from the above individuals who have lent their helping hand. Thus I would like to express my gratitude to all the individuals mentioned above for their support and motivation.

ABSTRACT

The growth of advanced electronics has brought human to new eras which allow human to fully utilize the innovation of technology in daily applications. As semiconductor industry develops rapidly, flip chip based electronic packaging faces new challenges for packaging design and performance to meet far more stringent requirements on package size, quality, performance and reliability. This research has been made to study the effect of nickel additions on the interfacial reactions between Sn-3.0Ag-0.5Cu lead-free solder and electroless nickel (boron)/ immersion gold (ENIG) surface finish. The effect of isothermal ageing treatment on solder joints after reflow soldering, at temperatures of 150°C and 175°C for 250, 500 and 1000 hours, is also investigated. Several material characterization techniques including optical, scanning electron microscopy, energy dispersive x- ray analysis and image analysis were applied to investigate the intermetallic in terms of morphology, composition, thickness and distribution. From the study, it was observed that the IMC growth is influenced by ageing temperature and ageing duration where the thickness of intermetallic compounds increases with ageing. The result also showed that solder with Ni addition formed thinner IMC after reflow and ageing up to 1000 hours. The EDX analysis shows that the IMC formation and growth in the solder joints led to the formation of several types of IMC with different morphologies and chemical composition.

ABSTRAK

Pertumbuhan elektronik canggih telah membawa manusia ke era baru yang membolehkan manusia memanfaatkan sepenuhnya inovasi teknologi dalam aplikasi seharian. Dengan perkembangan industri semikonduktor yang pesat, pembungkusan elektronik jenis *flip chip* menghadapi cabaran baru dalam rekabentuk dan prestasi pembungkusan untuk memenuhi keperluan yang jauh lebih ketat pada saiz pakej, kualiti, prestasi dan kebolehpercayaan. Penyelidikan ini telah dilakukan untuk mengkaji kesan penambahan nikel terhadap tindakbalas antara solder tanpa plumbum Sn- 3.0Ag- 0.5Cu dengan kemasan permukaan nikel tanpa elektrod/ rendaman emas (ENIG). Kesan rawatan penuaan pada sambungan solder selepas proses pematerian reflow pada suhu 150 °C dan 175 °C selama 250, 500 dan 1000 jam juga diselidik. Beberapa teknik pencirian bahan termasuk optik mikroskop, scanning electron microscopy, analisis energy dispersive x- ray dan analisis imej digunakan untuk menyiasat intermetalik dari segi morfologi, komposisi, ketebalan dan taburannya. Dari kajian ini, didapati bahawa pertumbuhan IMC dipengaruhi oleh suhu dan tempoh penuaan di mana ketebalan sebatian intermetalik meningkat dengan rawatan penuaan. Keputusan kajian juga menunjukkan solder dengan penambahan Ni membentuk lapisan IMC yang nipis selepas reflow dan penuaan selepas 1000 jam. Analisis *EDX* menunjukkan pembentukan *IMC* dan pertumbuhan dalam sambungan solder menyebabkan pembentukan beberapa jenis IMC dengan morfologi dan komposisi kimia yang berlainan.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABSTRACT		V
	ABS	ГКАК	vi
	TAB	LE OF CONTENTS	vii
	LIST	COF TABLES	xi
	LIST	COF FIGURES	xii
	LIST	COF APPENDICES	xvi
1	INTF	RODUCTION	1
	1.1	Introduction	1
	1.2	Significance of Study	2
	1.3	Objectives of Research	3
	1.4	Scopes of Research	3
	1.5	Structure of Thesis	4
2	LITE	CRATURE REVIEW	5
	2.1	Introduction	5
	2.2	Overview of Electronic Packaging	5

	2.2.1	Electronic Packaging Hierarchy	7
		2.2.1.1 Level 0 Interconnections	8
		2.2.1.2 Level 1 Interconnections	9
		2.2.1.3 Level 2 Interconnections	11
		2.2.1.4 Level 3 Interconnections	11
2.3	Die L	evel Interconnect Technology	12
	2.3.1	Wire Bonding Technology	12
	2.3.2	Tape Automated Bonding (TAB)	15
	2.3.3	Flip Chip Bonding	16
		2.3.3.1 Flip Chip Joining Method	19
2.4	Flip C	Chip Assembly	21
	2.4.1	Solder Bump Structure for Flip Chip	22
		Interconnect	
		2.4.1.1 Under Bump Metallurgy (UBM)	23
		2.4.1.2 Solder Bump	25
	2.4.2	Flip Chip Attachment	26
	2.4.3	Reflow Soldering Process	27
	2.4.4	Flux Cleaning	27
	2.4.5	Underfill and Cure Process	27
2.5	Surfac	e Finishes	29
	2.5.1	Hot Air Solder Leveling (HASL)	29
	2.5.2	Organic Solderability Preservative (OSP)	30
	2.5.3	Immersion Silver	31
	2.5.4	Immersion Tin	31
	2.5.5	Electroless Nickel/ Electroless Palladium/	32
		Immersion Gold (ENEPIG)	
	2.5.6	Electroless Nickel/ Immersion Gold (ENIG)	33
2.6	Solder	ring Process	34
	2.6.1	Lead- Free Solder Alloys	34
	2.6.2	Type of Soldering	35
		2.6.2.1 Wave Soldering	36

		2.6.2.2 Reflow Soldering	37
		2.6.3 Solderability	40
	2.7	Intermetallic Compound (IMC)	40
		2.7.1 Interfacial Reactions between Sn and Cu	42
		2.7.2 Interfacial Reactions between Sn and Ni	44
		2.7.3 Interfacial Reactions between Sn and Au	52
		2.7.4 Interfacial Reactions between Sn and Ag	53
3	RES	EARCH METHODOLOGY	55
	3.1	Introduction	55
	3.2	Substrate Material	57
	3.3	Pre- Treatment	57
	3.4	Electroless Nickel Plating	59
	3.5	Immersion Gold Plating	61
	3.6	Reflow Soldering	62
		3.6.1 Solder Mask Lamination	62
		3.6.2 Solder Bump Formation	63
	3.7	Isothermal Ageing	65
	3.8	Characterization on Intermetallic Compound (IMCs)	66
		3.8.1 Identification of Specimens	67
		3.8.2 Characterization of Top Surface Specimens	68
		3.8.3 Characterization of Cross Section Specimens	68
4	RES	SULT AND DISCUSSION	70
	4.1	Introduction	70
	4.2	Studies on The IMC Morphology	71
		4.2.1 Identification of Intermetallic Compound	71
		(IMC) in Solder Joint	
		4.2.2 Interfacial Reaction During Reflow Soldering	74
		4.2.3 Effect of Isothermal Ageing Treatment on	80
		IMC Growth	
	4.3	Studies on IMC Thickness	90

5	CON	ICLUSIONS AND RECOMMENDATIONS	97
	5.1	Conclusions	97
	5.2	Recommendations	98
	REF	ERENCES	99
	APP	ENDIX A	105
	APP	ENDIX B	113

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Summary of the reported reaction products between	47		
	SnAgCu solders and Ni soldering pads after reflow (C. E.			
	Ho et al., 2006)			
3.1	Chemical composition and parameters for electroless	59		
	nickel with boron solution			
3.2	Chemical composition and parameters for immersion gold	61		
	plating solution			
3.3	Sample Identification Table	67		
3.4	Chemical composition of Klemm Solution II	69		
4.1	Atomic number of main elements in IMC	72		
4.2	Atomic percentage of predicted IMCs	73		
4.3	Cross section views of IMC thickness growth for ageing	81		
	temperature of 150 °C			
4.4	Cross section views of IMC thickness growth for ageing	82		
	temperature of 175 °C			
4.5	Average IMC thickness measurements at ageing	91		
	temperature of 150 °C			
4.5	Average IMC thickness measurements at ageing	91		
	temperature of 175 °C			

LIST OF FIGURES

TITLE

PAGE

The hierarchy of electronic packaging	8		
Single chip module			
Multichip module			
Printed circuit board assembly	11		
Interconnection of PCBs on motherboard	12		
Ball- stitch bonding	13		
Wedge bonding	14		
Tape automated bonding	16		
Flip chip package	17		
Cross section of flip chip package	17		
Example of flip chip joining methods	21		
Process steps in flip chip package	22		
Solder bump structure	23		
Cross section of underfilled package (left) and	28		
underfilling process (right)			
Hot air solder leveling (HASL)	30		
Organic solderability preservative (OSP)	30		
Immersion silver	31		
Immersion tin	32		
Electroless nickel/ electroless palladium/ immersion gold	32		
(ENEPIG)			
Electroless nickel/ immersion gold (ENIG)	33		
	Multichip module Printed circuit board assembly Interconnection of PCBs on motherboard Ball- stitch bonding Wedge bonding Tape automated bonding Flip chip package Cross section of flip chip package Example of flip chip package Example of flip chip package Solder bump structure Cross section of underfilled package (left) and underfilling process (right) Hot air solder leveling (HASL) Organic solderability preservative (OSP) Immersion silver Immersion tin Electroless nickel/ electroless palladium/ immersion gold (ENEPIG)		

2.21	Wave soldering technique	37
2.22	Reflow profile	39
2.23	Cu- Sn binary system (T. Laurila et al., 2005)	42
2.24	Ni- Sn binary system (T. Laurila et al., 2005)	45
2.25	Schematic diagram of the interfacial microstructure after	49
	the reflow γ -Ni indicates amorphous Ni (J.W. Jang et al.,	
	2000)	
2.26	Schematic diagram of the interfacial microstructure after	49
	the ageing at 170°C for 15 days (J.W. Jang et al., 2000)	
2.27	Schematic diagram of the interfacial microstructure after	50
	the ageing at 170°C for 15 days (J.W. Jang et al., 2000)	
2.28	Sn- Au binary system (James J. Licari, 1995)	52
2.29	Ag- Sn binary system (James J. Licari, 1995)	54
3.1	Flow chart of experimental setup	56
3.2	Copper substrate dimension	57
3.3	Surface pre- treatment process steps for copper substrates	58
3.4	Schematic diagram of equipment setup for electroless	60
	nickel (boron) plating	
3.5	Plating bath	60
3.6	Schematic diagram of equipment setup for immersion	62
	gold plating	
3.7	(a) Solder masking laminator (b) UV cure equipment	63
3.8	Reflow profile for Sn-Ag-Cu solder	64
3.9	Resistance furnace for reflow soldering	65
3.10	Ageing oven	66
4.1	Example of atomic percentage calculation	72
4.2	IMC morphology after reflow for SAC305 solder	74
4.3	Cross section views of the IMC formed between Ni layer	75
	and (a) SAC305 (b) SAC305/ 0.05Ni and (c) SAC305/	
	0.1Ni	
4.4	Top surface views of intermetallics formed during reflow	77
	between ENIG and SAC305 solder	

4.5	Top surface views of intermetallics formed during reflow	78
	between ENIG and SAC305/ 0.05Ni solder	
4.6	Top surface views of intermetallics formed during reflow	79
	between ENIG and SAC305/ 0.1Ni solder	
4.7	Side and top view of the overheated substrate under	80
	175°C ageing temperature	
4.8	Top surface views of intermetallics formed during ageing	83
	temperature of 150°C between ENIG and SAC305 solder	
	for (a, b) 250 hours, (c, d) 500 hours, (e, f) 1000 hours	
4.9	Top surface views of intermetallics formed during ageing	84
	temperature of 150°C between ENIG and SAC305/	
	0.05Ni solder for (a, b) 250 hours, (c, d) 500 hours, (e, f)	
	1000 hours	
4.10	Top surface views of intermetallics formed during ageing	85
	temperature of 150°C between ENIG and SAC305/ 0.1Ni	
	solder for (a, b) 250 hours, (c, d) 500 hours, (e, f) 1000	
	hours	
4.11	Top surface views of intermetallics formed during ageing	86
	temperature of 175°C between ENIG and SAC305 solder	
	for (a, b) 250 hours, (c, d) 500 hours, (e, f) 1000 hours	
4.12	Top surface views of intermetallics formed during ageing	87
	temperature of 175°C between ENIG and SAC305/	
	0.05Ni solder for (a, b) 250 hours, (c, d) 500 hours, (e, f)	
	1000 hours	
4.13	Top surface views of intermetallics formed during ageing	88
	temperature of 175°C between ENIG and SAC305/ 0.1Ni	
	solder for (a, b) 250 hours, (c, d) 500 hours, (e, f) 1000	
	hours	
4.14	Cross section view of SAC305/ 0.1Ni with 175°C ageing	89
	temperature after 1000 hours	
4.15	Effect of solder type on intermetallics for ageing	92
	temperature of 150°C	

4.16	Effect of solder type on intermetallics for ageing	92
	temperature of 175°C	
4.17	Effect of ageing temperature 150°C on intermetallics for	94
	all solders	
4.18	Effect of ageing temperature 175°C on intermetallics for	94
	all solders	
4.19	Effect of ageing duration on intermetallics for solder	95
	SAC305	
4.20	Effect of ageing duration on intermetallics for solder	95
	SAC305/ 0.05Ni	
4.21	Effect of ageing duration on intermetallics for solder	96
	SAC305/ 0.1Ni	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
A	SEM- EDX results (selected samples only)	105	
В	JEDEC standard high temperature storage life	113	
	(JESD22- A103C)		

CHAPTER I

INTRODUCTION

1.1 Introduction

Flip chip technology is nothing new in the microelectronic field. This idea was initiated in early 1970 by IBM, one of the leading players in the electronic packaging market which believed it is a promising option for future electronic packaging. However the complication in the packaging assembly processes and high cost of wafer bumping process has given way to wire bonding technology to continue dominating the semiconductor packaging business. Recently, market demand in more complexity of the electronic product design and its functionality has driven the application of flip chip technology as people foresee the wire bonding technology has reached its limit. In fact, most electronic packaging manufacturers had tipped flip chip bonding to be the preferable interconnects bonding technology which will steer the rapid growth of the electronic devices.

In earlier days, flip chip bonding technology employed solder as the interconnection material to connect dies to packaging substrates and lead tin solder alloy has dominated the assembly process due to its low melting temperature and excellent wetting characteristics toward several surface finishes. However, the toxicity of lead which endangers the environmental and human health has urged the manufacturers to develop new lead-free solder to replace tin- lead solder. Surface finish is another variable that must be taken into account during metallurgical bonding. The purpose of surface finish is to protect the substrate base metal from oxidizing and limits the diffusion of solder into underlying metal. With various substrates surface finishes being developed, electroless nickel/ immersion gold (ENIG) surface finish has steadily increased in preference over the years because it offers better planarity, improved corrosion resistance to the base material and excellent wettability. From application point of view, the ENIG surface finish has become the preferable option for flip chip products.

During interconnection, chemical reactions occur between solder and substrate underlying material. A thin and continuous intermetallic compound (IMC) layer will be formed after solidification process and it is an essential requirement for flip chip interconnects to ensure a good bonding. Nevertheless, thick IMC layer may deteriorate the reliability of solder joint due to their brittle behaviour. Hence, there is a need to understand the interaction and phase evolution in solder joint to establish the engineering database.

1.2 Significance of Study

Electroless nickel plating is an important process in electroless nickel/ immersion gold (ENIG) surface finish. The electroless nickel processes are grouped as nickel with phosphorus (Ni-P), nickel with boron (Ni-B) and pure nickel. Electroless nickel with phosphorus is standard practice in semiconductor industry because of its excellent manufacturability and low cost. Furthermore, it has been well established and has demonstrated the capability to fulfill the electronic packaging quality and reliability. Recently, electroless nickel with boron deposition also received attention as an alternative due to its superior mechanical and chemical properties. Therefore, people start to study the interfacial reaction between solder and Ni- B layer toward the reliability of solder joint since it is one of the most crucial criteria in microelectronic packaging. As the interaction yet to be established, it is an interesting research to have better understanding on these interconnects.

1.3 Objectives of Research

One of the main objectives of this project is to investigate the types and morphology of intermetallic compounds which formed between Sn- Ag- Cu (leadfree) solders and Electroless Nickel (Boron)/ Immersion Gold surface finish after reflow soldering process and solid state ageing treatment.

The second objective is to evaluate the effects of solid state ageing treatment on IMC formation and growth. Under this treatment, there are two main parameters that will be considered: ageing temperature and ageing duration.

1.4 Scopes of Research

The copper substrates are plated with Electroless Nickel (Boron) / Immersion Gold (ENIG) surface finish with 1 to 3% of Boron content. Different types of lead free solders (Sn- Ag3.0- Cu0.5, Sn- Ag3.0- Cu0.5 with 0.05% nickel doping and Sn-Ag3.0- Cu0.5 with 0.1% nickel doping) are used with size of 500µm diameter solder balls mounted on the substrate and reflow soldering process is conducted. The study

also focuses on isothermal ageing treatment at different temperatures (150°C and 175°C) with 250 hours, 500 hours and 1000 hours. Characterization is done on the IMC formation after reflow soldering process and IMC growth after ageing to determine types, morphology and thickness of IMC.

1.5 Structure of Thesis

This thesis consists of five chapters. Chapter 1 is the introduction of this thesis where objectives and scope of research are defined. Chapter 2 is the review of electronic packaging and types of interconnection technologies available in current market. This chapter also includes some of the common used surface finishes and solders in the electronic packaging market, soldering techniques and intermetallic compound formation at the interface of solder joints. Chapter 3 states the detailed of experimental setup of this research include the material preparation, soldering and characterization methods. Chapter 4 contains the results and discussion obtained from the experimental work. Chapter 5 is the conclusion of the thesis based on the results and discussion of the work. Lastly, chapter 6 states some recommendations for future work.