DEVELOPMENT OF A DUCTED HORIZONTAL AXIS MARINE CURRENT TURBINE ROTOR

AZLIZA BINTI ABDUL AZIZ

UNIVERSITI TEKNOLOGI MALAYSIA

DEVELOPMENT OF A DUCTED HORIZONTAL AXIS MARINE CURRENT TURBINE ROTOR

AZLIZA BINTI ABDUL AZIZ

A thesis submitted in fulfilment of the requirement for the award of the degree of Master of Engineering (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JULY 2010

I humbly dedicate this pearl of my effort to...

my beloved husband,

Mohd Yusairi B. Mohd Yusoff

my beloved parents,

Abdul Aziz B. Abdullah & Rohani Bt Baba

and my beloved siblings

who have supported me in many ways.

ALLAH bless all of us

ACKNOWLEDGEMENT

First of all, I would like to thank ALLAH s.w.t for giving me His infinite graces, love and blessings to enable me to pursue my Master Degree.

I would also like to express my heartfelt appreciation to my supervisors, Associate Professor Dr. Omar B. Yaakob and Ir. Dr. Mohamad Pauzi B. Abdul Ghani for their supervision, encouragement and guidance, that lead me for the completion of this project.

Thanks and appreciation are also extended to lecturers, friends and countless others who have contributed their efforts, information, helping and kindness in accomplishing this project.

Lastly, I am grateful to my beloved husband, parents and siblings for their support and patience. My deepest gratitude is meant for all of you.

ABSTRACT

Marine current energy resource has great potential to be exploited on a large scale because of its predictability and intensity. This energy can be extracted by various kinds of device, one of which is Horizontal Axis Marine Current Turbine (HAMCT). This thesis describes the development of a HAMCT to extract marine current energy suitable for Malaysian sea. The marine current speed in the Malaysian sea is quite low, averaging only about 1 m/s (2.0 knots). Presently available HAMCT designs are not suitable for low current speeds since a large turbine is needed while the blade diameter is limited to water depth. In this thesis, the problem is circumvented by placing the rotor in a duct, which helps to increase the water speed. The HAMCT rotor and duct were developed using Computer Aided Design (CAD) technique and analysed using Computational Fluids Dynamics (CFD) software. For the rotor, simulations were carried out with two conditions; 'without duct' and 'with duct'. A 4.884 m diameter rotor with various numbers of blade and design tip speed ratio (TSR) were developed. The duct was developed in two different shapes, in which each shape has 5 variations of cylinder length. From the simulation of ducts, the current speed at the entrance of the cylinder is taken into account because the rotor is placed inside the cylinder. Thus, the maximum current speed generated was used in the 'with duct' simulation condition, while 'without duct' condition is when the rotor is simulated using actual current speed. The output power and performance of rotor are investigated using two methods; CFD simulation results and Blade Element Momentum (BEM) theory. It was found that the rotor model 4B2 is the greatest rotor because of its highest power coefficient for both methodst. The output power of the ducted turbine was significantly enhanced compared to the one without duct, which is 546.931W and 4250.012W by BEM. Validation was carried out by comparison to Batten work and it shows that the shapes of curves for both works are similar which this is sufficient to validate that the results of this project are genuine and acceptable.

ABSTRAK

Tenaga arus marin mempunyai potensi yang besar untuk digunakan pada skala yang besar kerana kebolehanramalannya dan kesungguhannya. Tenaga ini boleh diserap menggunakan pelbagai jenis alat, salah satu daripadanya adalah Horizontal Axis Marine Current Turbine (HAMCT). Tesis ini menghuraikan pembangunan HAMCT untuk menyerap tenaga arus marin yang sesuai dengan laut Malaysia. Halaju arus marin di Malaysia adalah rendah, secara puratanya 1m/s (2 knots). Pada masa ini, reka bentuk HAMCT yang sedia ada tidak sesuai untuk halaju arus rendah kerana turbin yang besar diperlukan, sementara diameter bilah terhad terhadap kedalaman air. Di dalam tesis ini, masalah ini diatasi dengan meletakkan rotor di dalam saluran, di mana ia membantu menambahkan halaju air. Rotor HAMCT dan saluran telah dibangunkan menggunakan teknik Computer Aided Design (CAD) dan di simulasi menggunakan Computational Fluids Dynamics (CFD). Bagi rotor, simulasi dilakukan dalam dua keadaan, 'tanpa saluran' dan 'dengan saluran'. Rotor berdiameter 4.884 m dengan pelbagai bilangan bilah dan Tip Speed Ratio (TSR) telah dibangunkan. Saluran telah dibangunkan dalam dua bentuk yang berlainan, di mana setiap bentuk mempunyai 5 panjang silinder yang berlainan. Dari simulasi saluran, hanya halaju arus pada pintu masuk silinder yang diambilkira kerana rotor diletakkan di dalam silinder. Halaju maksima yang terhasil akan digunakan untuk simulasi 'dengan saluran', manakala keadaan 'tanpa saluran' adalah apabila rotor disimulasi menggunakan halaju asal. Kuasa keluaran dan pekali kuasa rotor diselidik menggunakan 2 kaedah; keputusan simulasi CFD and teori BEM. Didapati rotor model 4B2 adalah rotor terbaik kerana kecekapan rotornya yang paling tinggi bagi kedua-dua kaedah. Kuasa keluaran turbin bersalur didapati bertambah berbanding turbin tanpa saluran iaitu 546.931W dan 4250.012W dari BEM. Pengesahan keputusan dilakukan dengan membandingkannya dengan hasil kerja Batten dan didapati bentuk graf bagi kedua-dua kerja adalah sama, dimana ini menunjukkan keputusan projek ini adalah tulen dan boleh diterima.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE		
	TITL	JE PAGE	i		
	DEC	DECLARATION			
	DED	ICATION	iii		
	ACK	iv			
	ABST	ГКАСТ	V		
	ABS	ГКАК	vi		
	TAB	LE OF CONTENTS	vii		
	LIST OF TABLES				
	LIST	xiv			
	LIST	xvii			
	LIST	OF APPENDICES	xix		
1	INTF	RODUCTION	1		
	1.1	Background	1		
	1.2	Problem Statement	2		
	1.3	Objective	3		
	1.4	Scopes of the Project	3		

2	LITE	RATUI	RE REVI	EW	4
	2.1	Introd	uction		4
	2.2	Marin	e Current	Energy Resource	4
		2.2.1	Resourc	e Basics	5
		2.2.2	Malaysi	an Ocean Characteristics	7
	2.3	Horizo	ontal Axis	Marine Current Turbine (HAMCT)	
		Techn	ologies		9
		2.3.1	Compor	nents of Horizontal Axis Marine Current	
			Turbine	(HAMCT)	9
		2.3.2	Support	Structure Concepts	10
		2.3.3	Prototyp	bes of Horizontal Axis Marine Current	
			Turbine	(HAMCT)	11
			2.3.3.1	Marine Current Turbine Ltd (MCT)	12
			2.3.3.2	Hammerfest StrØm As	14
			2.3.3.3	Verdant Power	15
		2.3.4	Emergir	ng Technologies	17
			2.3.4.1	SMD Hydrovision	17
			2.3.4.2	Lunar Energy	18
		2.3.5	Summar	y of HAMCT Specifications	20
	2.4	Compa	arison of I	Experiments and Blade Element	
		Mome	ntum (BE	M) Theory	21
	2.5	Conclu	iding Ren	narks	22
3	DESI	GN AS	PECT O	F DUCTED HORIZONTAL AXIS	
	MAR	INE CU	URRENT	TURBINE (HAMCT) ROTOR	23
	3.1	Introd	uction		23
	3.2	Blade	Element	Momentum (BEM) Theory	23
		3.2.1	Moment	tum Theory	24
			3.2.1.1	Axial Force	24
			3.2.1.2	Rotating Annular Stream Tube	26
		3.2.2	Blade E	lement Theory	28

viii

		3.2.2.1	Relative Flow	29	9
		3.2.2.2	Blade Elements	31	1
	3.2.3	Tip Los	s Correction	34	4
	3.2.4	Blade E	lement Momentum Equations	34	4
	3.2.5	Power (Dutput	35	5
3.3	Desig	n Parame	ter of the Rotor	37	7
	3.3.1	Diamete	er	37	7
	3.3.2	Number	of Blades	38	3
	3.3.3	Tip Spe	ed Ratio (TSR)	39	9
	3.3.4	Blade C	Geometry	40)
		3.3.4.1	Chord Length	40)
		3.3.4.2	Blade Twist	42	2
	3.3.5	Blade S	olidity	43	3
	3.3.6	Aerofoi	l Section	43	3
		3.3.6.1	NACA Aerofoil Series	44	1
		3.3.6.2	NACA 4-Digit Series	45	5
		3.3.6.3	Angle of Attack	46	5
		3.3.6.4	Lift and Drag Characteristic	47	7
	3.3.7	Power (Coefficient	48	3
3.4	Design	n Parame	ter of the Duct	48	3
	3.4.1	Nozzle		49)
	3.4.2	Cylinde	r	50)
	3.4.3	Diffuse	r	50)
M	ETHODO	LOGY		51	1
4.1	Introd	uction		51	1
4.2	Litera	ture Revi	ew	53	3
4.3	Duct I	Parametri	c Study	53	3
	4.3.1	Duct De	esign	53	3
		4.3.1.1	Nozzle and Diffuser	54	4
		4.3.1.2	Cylinder	55	5

4

	432	Develop	ped Duct	56
			Inlet Duct	56
			Outlet Duct	57
			Full Duct	58
			Full Alternate Duct	59
4.4	Rotor	Parametr	ic Study	60
	4.4.1	Rotor D	lesign	60
		4.4.1.1	Diameter	60
		4.4.1.2	Number of Blades	61
		4.4.1.3	Aerofoil and Blade Geometry	62
4.5	Comp	outational	Fluid Dynamic (CFD) Simulation	67
4.6	Blade	e Element	Momentum (BEM) Calculation	74
4.7	Rotor	Performa	nce Comparison	80
RES	ULTS A	AND DISC	CUSSIONS	81
5.1	Intro	luction		81
5.2	Comp	outational	Fluid Dynamic (CFD) Simulation Results	81
	5.2.1	Duct Re	esults	82
		5.2.1.1	Inlet Duct	82
		5.2.1.2	Outlet Duct	85
		5.2.1.3	Full Duct	88
		5.2.1.4	Full Alternate Duct	91
	5.2.2	Rotor B	lade Results	94
5.3	Blade	Element	Momentum (BEM) Performance Analysis	97
5.4	Rotor	Performa	nce Comparison	97
	5.4.1	Compari	son of Rotor Performance Obtained From	
		Computa	ational Fluid Dynamic (CFD) Simulations	98
	5.4.2	Compari	son of Rotor Performance between	
		Develop	ed Rotors from BEM Theory	99
	5.4.3	Compari	son of Rotor Performance between	
		Computa	ational Fluid Dynamic (CFD) and Blade	

5

		Element Momentum (BEM)	101
	5.5	Results Validation	103
ſ	CON		105
6	CON	CLUSION AND RECOMMENDATION	105
	6.1	Conclusion	105
	6.2	Recommendation and Future Work	106
	REFE	RENCES	108
	APPE	NDICES	110

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Predicted current speed by RMN	8
2.2	Summary of HAMCT specifications	20
3.1	TSR based blade type for horizontal axis wind turbine	39
3.2	Relation between blade number and TSR	40
4.1	Cylinder length at each L/D	55
4.2	Models of Inlet Duct	57
4.3	Models of Outlet Duct	58
4.4	Models of Full Duct	59
4.5	Models of Full Alternate Duct	60
4.6	Models of the blade	62
4.7	Characteristics of NACA 0015	64
4.8	Blade arrangement of model with TSR of 4	65
4.9	Blade arrangement of model with TSR of 5	65
4.10	Blade arrangement of model with TSR of 6	66
4.11	Model of 5B5	75
4.12	Iteration at root of model 5B5	78
4.13	Calculation of power coefficient for model 5B5 using	
	BEM	79
5.1	Velocity flows at entrance of cylinder of Inlet Duct	83
5.2	Velocity flows at entrance of cylinder of Outlet Duct	86

5.3	Velocity flows at entrance of cylinder of Full Duct	89
5.4	Velocity flows at entrance of cylinder of Full Alternate	
	Duct	92
5.5	Components of force acted on the blades	95
5.6	Output power calculation of model 5B5 in 'without	
	duct' condition	95
5.7	Output power and power coefficient by CFD	
	simulations	96
5.8	Output power and power coefficient by BEM	97

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Spring tides	5
2.2	Neap tides	6
2.3	Locations of marine current at Peninsular Malaysia	8
2.4	Principle components of a HAMCT	10
2.5	Support structure concepts	11
2.6 (a)	Hybrid photos and artist's impression (below surface) to	
	show rotor lowered	12
2.6 (b)	Raised for maintenance	12
2.7 (a) & (b)	Artist's impression of how rotor turbine system may be	
	installed on a monopole so that it can be raised above the	
	servicing and replacement	13
2.8	Artist's impression of a row of marine current turbines,	
	one of them raised for maintenance	14
2.9 (a)	Installation of the nacelle	15
2.9 (b)	Visualisation of the turbine farm	15
2.10	Verdant Power Free Flow Turbine being installed into	
	NYC's East River in December 2006	16
2.11 (a)	SMD Hydrovision's TidEl prototype viewed from rear	18
2.11 (b)	Artist's impression of how TidEl may be installed	18
2.12	Lunar Energy's ducted turbine	19

2.13	Theoretical power coefficient simulations for various hub	
	pitch angles compared with experimental data points	21
3.1	Axial stream tube around a wind turbine	24
3.2	Rotating annular stream tube	26
3.3	Rotating annular stream tube: notation	27
3.4	The blade element model	29
3.5	Flow onto the turbine blade	30
3.6	Forces on the turbine blade	32
3.7	Relation between current angle and local tip speed ratio	42
3.8	Geometry of symmetrical and cambered aerofoil	44
3.9	Curves of lift and drag	47
3.10	Optimum nozzle geometry	49
4.1	Flowchart of the project methodology	52
4.2 (a)	Shape A nozzle and diffuser design parameters	55
4.2 (b)	Shape B nozzle and diffuser design parameters	55
4.3	Inlet duct for Shape A and Shape B	56
4.4	Outlet duct for Shape A and Shape B	57
4.5	Shape A and Shape B duct	58
4.6	Duct with alternate shape of nozzle and diffuser	59
4.7	C_l/C_d characteristics for various NACA symmetry	
	analyses from DesignFOIL software	63
4.8	C_L and C_D for NACA 0015 at different angle of attack	
	analysis from DesignFOIL software	64
4.9	Blade geometry for various numbers of blades and design	
	tip speed ratio	66
4.10	Detail blades design drawing of model 4B2	67
4.11	Defining the unit system in FloWorks	68
4.12	Defining analysis type in FloWorks	68
4.13	Defining type of the flow in FloWorks	69
4.14	Defining the wall condition in FloWorks	69
4.15	Defining the initial condition in FloWorks	70

4.16	Defining initial mesh in FloWorks	70
4.17	Boundary types of duct simulations	71
4.18	Boundary types of blade simulations	71
4.19	Front view for mesh of the duct	72
4.20	Back view for mesh of the blade	72
5.1	Velocity along the Shape A Inlet Duct	82
5.2	Velocity along the Shape B Inlet Duct	83
5.3	Front view of model AI1 showing a velocity distribution	84
5.4	Top view of model AI1 showing a velocity distribution	84
5.5	Velocity along the Shape A Outlet Duct	85
5.6	Velocity along the Shape B Outlet Duct	86
5.7	Front view of model BO2 showing a velocity distribution	87
5.8	Top view of model BO2 showing a velocity distribution	87
5.9	Velocity along the Shape A Full Duct	88
5.10	Velocity along the Shape B Full Duct	89
5.11	Front view of model BB3 showing a velocity distribution	90
5.12	Top view of model BB3 showing a velocity distribution	90
5.13	Velocity along the Shape A – Shape B Full Alternate	
	Duct	91
5.14	Velocity along the Shape B – Shape A Full Alternate	
	Duct	92
5.15	Front view of model AB2 showing a velocity distribution	93
5.16	Top view of model AB2 showing a velocity distribution	93
5.17	Comparison of power coefficient using CDF	98
5.18	Comparison of power coefficient using BEM	100
5.19	Comparison of power coefficient for TSR 4 rotor	101
5.20	Comparison of power coefficient for TSR 5 rotor	102
5.21	Comparison of power coefficient for TSR 6 rotor	102
5.22	Comparison of power coefficient between produced	
	results and Batten works	104

LIST OF ABBREVIATIONS

AR	-	Aspect Ratio
a	-	Axial induction factor
<i>a</i> '	-	Angular induction factor
В	-	Number of blade
С	-	Chord length
C_d	-	Drag coefficient
C_l	-	Lift coefficient
C_p	-	Power coefficient
D	-	Drag
D_{cyl}	-	Cylinder diameter
D_{hub}	-	Hub diameter
D_{noz}	-	Nozzle diameter
D_{rotor}	-	Rotor diameter
F	-	Force
F_x	-	Tangential force
F_{Θ}	-	Radian force
Ι	-	Inertia of an annulus
L	-	Angular moment
L	-	Lift
L_{cyl}	-	Cylinder length
L _{noz}	-	Nozzle length

т	-	Mass flow rate
Р	-	Output power
р	-	Pressure
p_1	-	Pressure at upstream of rotor or initial velocity
p_2	-	Pressure before reach rotor
<i>p</i> ₃	-	Pressure after through rotor
p_4	-	Pressure at downstream of rotor or final velocity
Q	-	Tip loss correction factor
R	-	Radius of the rotor
r	-	Rotor radii
TSR	-	Tip Speed Ratio
TSR_r	-	Local tip speed ratio
Т	-	Torque
V	-	Velocity
V_{l}	-	Velocity at upstream of rotor or initial velocity
V_2	-	Velocity before reach rotor
V_3	-	Velocity after through rotor
V_4	-	Velocity at downstream of rotor or final velocity
W	-	Relative velocity
α	-	Angle of Attack
β	-	Relative velocity angle
ϕ	-	Current angle
γ	-	Velocity angle
arphi	-	Blade twist angle
λ	-	Scale factor
heta	-	Blade angle
ρ	-	Density
σ '	-	Local solidity
ω	-	Angular velocity of blade wake
Ω	-	Angular velocity of blade

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Components of Blade Element	110
В	Detail Blades Design Drawing	114
С	Power Coefficient from BEM Calculation	121
D	Components of Force from CFD Simulation	125
Е	Power Coefficient Calculation in 'Without Duct'	
	Condition	129
F	Power Coefficient Calculation in 'With Duct' Condition	134

CHAPTER 1

INTRODUCTION

1.1 Background

Mankind has been utilizing renewable energy sources since the dawn of civilization through different technologies. Today, renewable energy sources play a significant role in the world and supply more than 14% of the total global energy demand [1]. The common factor for the development of renewable energy technologies in the 1970s is it was based on concern that there would be shortages of fossil fuel, but of course today the concern is for the damage to the environment from greenhouse gases if continue to burn even the known reserves of oil in their entirety [2].

Renewable energy sources, most notably, wind energy, solar energy and small scale hydro power schemes have undergone major development. One other form of renewable energy which has attracted great interest is marine current energy, which can be extracted by a device called marine current turbine. This energy resource has a great potential to be exploited on a large scale because of its predictability and intensity [3]. These advantages have given it the priority to be selected and developed in Malaysia as a new energy source as proven in Ariff [4]. Marine current turbines can be classified according to the orientation of the rotating axis. A horizontal axis marine current turbine (HAMCT) is an axial flow rotor which is favoured generally for wind turbines. The cross flow rotor or vertical axis marine current turbines (VAMCT) are either of drag or lift designs. Another alternative, the reciprocating device has also been developed. Nevertheless, in previous work done by Firdaus [5], the power coefficient of HAMCT is greater than the others, which means the HAMCT offers a great potential in power generation. Hence, this project mainly focuses on developing a rotor of horizontal axis marine current turbine (HAMCT) owing to Malaysian ocean characteristics.

1.2 Problems Statement

The horizontal axis turbine is very much depending on marine current speed and water depth. From the prototypes that have been developed and tested by other countries, the ideal marine current speed to make the turbine work is at least 2 m/s (4 knots). However, the averagely marine current in Malaysia is only 1 m/s (2.0 knots) [4], which is half of the speeds for which turbines have been developed in other countries. To develop a turbine in a low current speed, a big system of turbine is needed. The problem, however, lies in the blade diameter, which is limited to water depth. Therefore, some modification must be made on the current speed or the turbine itself, or both to enable the turbine to work in low current speed.

There are two approaches to improve the above mentioned problems. First approach is to modify the rotor parameters such as its diameter, number of blades, blade shape etc. The other method is to increase the water flow by placing the rotor in a duct, since Brian [6] in his comparison work had proven that by placing the turbine in the duct, the output power of the turbine will be increased by about three times than an open turbine of similar swept area.

1.3 Objective

The objective of this project is to develop a ducted horizontal axis marine current turbine (HAMCT) rotor to extract marine current energy suitable for Malaysian seas.

1.4 Scope of project

The scope of the project consists of the following:

- Performing literature review on marine current energy resources, prototypes of HAMCT that have been developed by other researchers, duct principle, and rotor blade aerodynamic design.
- Determination of a suitable shape of duct to place the rotor, developing ducts using Computational Aided Design (CAD) software and analysing the designs using Computational Fluid Dynamic (CFD) software.
- 3. Determination of rotor parameters those are suitable to be placed in Malaysian water, and developing rotors using CAD software.
- Analysing developed rotors using CFD software in two different conditions; 'without duct' condition, and 'with duct' condition and calculating their performance.
- 5. Calculation of rotor performance using Blade Element Momentum (BEM) theory.
- 6. Comparison of the rotor performance between CFD simulation and BEM theory.
- 7. Validation of the results by comparing the results with previous work that have done by other researcher.