APPLICATION OF DESIGN OF EXPERIMENT TECHNIQUE IN THE NICKEL-CHROMIUM ELECTROPLATING PROCESS ON WC-Co SUBSTRATE PRIOR HFCVD DIAMOND COATING

AYOOB AHRARI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical-Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2010

ESPECIALLY DEDICATED TO

My beloved fiancée Somaye

My Father HassanAli

My Brothers and Sisters....

My closed friends and relatives.....

May Allah bless all people that I love and it's my honour to share this happiness with my love ones.

ACKNOWLEDGEMENT

In the first place, I would like to say Alhamdulillah, for giving me the strength and health to do this project work.

I would like to express indebtedness to my supervisor and mentor, Prof. Dr. Noordin Bin Mohd Yusof, for his support, guidance, and advice. Thank you for being patient with me and allowing me to work at my own pace while at the same time quietly encouraging me onward. I am indebted to him more than he knows. His passion for research will forever be remembered.

I owe my deepest gratitude to my co.Supervisor, Assoc. Prof. Dr. Mohammad Sakhawat Hussain, for his help and support throughout the course of research.

Thanks also to Encik Azizi Safar and Ayub Bin Abu, for helping me in performing the experiment in the laboratory.

My sincere appreciation is also extends to my best friend, Mostafa, Ezzatollah, Eshagh, Alireza, Mahyar, Hamed, Payam, Habib, and Arman Shah, for their support at various occasions. Last but not least, I offer my regards and blessings to my lovely family who have supported me in any respect during the completion of the project. The great suggestions and comments from them were invaluable to me.

ABSTRACT

Cemented tungsten carbide (WC-Co) cutting tools are widely used in metal cutting industry. These tools wear rapidly when machining abrasive alloys and glassepoxy composites. In order to enhance the overall machining effectiveness of WC-Co, the coating of diamond on WC-Co has been attractive by virtue of its excellent hardness and low coefficient of friction. Poor adhesion of diamond coating to WC-Co is however observed because of the weak interface bonding resulting from graphite film formation during low-pressure diamond deposition due to presence of the cobalt binder. The use of interlayer between WC-Co and diamond coating has proved to overcome and reduce the negative effect of cobalt binder. In the current study, the coating of nickel-chromium on the cemented carbide (WC-Co) substrate via electroplating process has been investigated in order to obtain a thin layer with a good adhesion. Nickel was first coated on WC-Co substrate in experiments/trials involving three variable parameters; bath temperature, current density and plating time. Subsequently, chromium was coated on the nickel surface in experiments/trials involving two variable parameters; bath temperature and current density. Two levels factorial design of experiments involving nickel and chromium coatings on WC-Co substrates enabled the identification of current density and plating time as the two important variable parameters affecting the thickness of nickel and chromium coating. Temperature did not appear to have a significant influence on the thickness of coating. However, it had notable effects on the adhesion of nickel and chromium coatings. The current density had a slight effect on the adhesion in comparison with the temperature. A current density of 4 Amp/dm², bath temperature of 58 °C, and plating time of 26.31 minutes were identified as suitable electroplating parameter conditions for producing a thin, 6.3 µm, nickel layer with good adhesion on the WC-Co substrate whilst a current density of 12 Amp/dm², bath temperature of 42 °C, and plating time of 15 minutes were identified as suitable electroplating parameter conditions for producing a thin, $2.4\mu m$, chromium layer with good adhesion on the nickel coated WC-Co substrate.

ABSTRAK

Alat pemotongan karbide secara meluasnya digunakan di dalam industri pemotongan logam. Alat ini haus dengan cepat ketika memotong aloi pelelas dan komposit kaca-epoxy. Untuk meningkatkan keberkesanan pemesinan WC-Co, salutan berlian pada karbide telah menarik perhatian disebabkan sifatnya yang keras dan pekali geseran yang rendah. Kelekatan salutan berlian yang lemah telah dikenalpasti disebabkan oleh kelekatan antara muka yang lemah yang mana akan menghasilkan pembentukan grafit semasa salutan berlian pada tekanan yang rendah disebabkan oleh kehadiran bahan pengikat kobalt. Penggunaan antarlapis antara WC-Co dan salutan berlian telah terbukti dapat mengurangkan bahan pengikat kobalt. Dalam kajian ini, salutan nikel-kromium pada karbide melalui proses elektroplating telah dilakukan untuk membolehkan lapisan berlian melekat dengan baik. Langkah pertama dalam eksperimen ini ialah menyalutkan nikel ke atas substrat dalam tiga pembolehubah parameter; suhu larutan, ketumpatan arus dan masa plating. Selepas itu, kromium akan disalutkan ke atas permukaan nikel dalam dua pembolehubah parameter; suhu larutan dan ketumpatan arus. Rancangan faktorial dua level salutan nikel dan kromium pada substrat WC-Co membolehkannya mengenalpasti ketumpatan arus dan masa plating sebagai dua pembolahubah parameter yang mempengaruhi ketebalan salutan nikel dan kromium. Suhu tidak menunjukkan perubahan signifikan kepada ketebalan salutan. Walaubagaimanapun, ia mempunyai kesan yang baik ke atas kekuatan melekat pada salutan nikel dan kromium. Ketumpatan arus telah memberi kesan yang sedikit kepada kekuatan melekat berbanding dengan suhu. Ketumpatan arus pada 4Amp/dm², suhu larutan sehingga 58°C dan masa plating selama 26.31minit telah dikenal pasti sebagai parameter yang sesuai untuk elekto plating dalam menghasilkan lapisan nikel senipis 6.3µm yang mempunyai kekuatan melekat yang baik pada substrat WC-Co manakala ketumpatan arus pada 12Amp/dm², suhu larutan pada 42°C dan masa plating selama 15 minit dikenalpasti sesuai untuk parameter elektroplating yang menghasilkan lapisan kromium senipis 2.4µm yang baik kekuatan melekatnya pada salutan nikel substrat WC-Co.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF SYMBOLS	xviii
	LIST OF APPENDICES	xix
1	INTRODUCTION	1
	1.1 Background of the Study	1
	1.2 Background of the Problem	2
	1.3 Statement of the Problem	4
	1.4 Objective of the Study	4
	1.5 Scope of the Study	5
	1.6 Thesis Layout	5
2	LITERATURE REVIEW	7
	2.1 Introduction	7
	2.2 Design of Experiment Technique	8
	2.2.1 Guidelines for Designing Experiments	9

2.3	Electr	oplating T	echnique	9	
	2.3.1	Electrochemical Terms			
	2.3.2	Electrop	ating Equipment for Nickel and		
		Chromiu	m Electroplating	11	
	2.3.3	Electrop	lating Process	14	
	2.3.4	Nickel E	Nickel Electroplating		
		2.3.4.1	Properties of Nickel	15	
		2.3.4.2	The Reason of Using Nickel prior		
			Chromium	15	
		2.3.4.3	The Basic of Nickel Electroplating		
			Process	16	
		2.3.4.4	Hydrogen Evolution and Cathode		
			Efficiency	17	
		2.3.4.5	Anode Efficiency	17	
		2.3.4.6	Controlling the Solution Composition	17	
		2.3.4.7	Controlling pH, Temperature Current		
			Density and Water Quality	18	
		2.3.4.8	Controlling Impurities	18	
		2.3.4.9	Nickel Plating Solution Composition	18	
		2.3.4.10	Description of Nickel Plating Solution		
			Compositions	19	
	2.3.5	Chromiu	m Electroplating	21	
		2.3.5.1	Cathode Efficiency of Chromium Plating		
			Solutions	22	
		2.3.5.2	Chromium Plating Solution Composition	23	
2.4	Histor	ical Backg	ground of Diamond Coating	24	
2.5	CVD	Process		26	
	2.5.1	Advanta	ges of CVD Process	27	
	2.5.2	Disadvar	ntages of CVD Process	28	
	2.5.3	Five Ma	or Characteristics of CVD Diamond		
		Coating		29	
	2.5.4	Hot Fila	ment CVD Technique	31	
		2.5.4.1	Advantages of HFCVD	34	
		2.5.4.2	Disadvantages of HFCVD	34	

	2.5.5	Substrate Material	34	
		2.5.5.1 Characteristic of Tungsten Carbide		
		(WC-Co)	34	
		2.5.5.2 Thermal Expansion Coefficient of		
		Substrate	36	
	2.5.6	The Effect of Major Parameters on HFCVD		
		Diamond Coating on WC-Co	37	
		2.5.6.1 The Effect of Methane Concentration	37	
		2.5.6.2 The Effect of Reactor Pressure	38	
		2.5.6.3 The Effect of Substrate Temperature	38	
		2.5.6.4 The Effect of Co Binder	39	
2.6	Pre-Ti	reatment Methods in Order to Suppress the Negative		
	Effect	s of Cobalt	41	
	2.6.1	Heat Treatments	42	
	2.6.2	Etching of Cobalt Binder	42	
	2.6.3	Micro-Roughening of WC-Co Surface Morphology	43	
	2.6.4	Forming Stable Cobalt Compounds	44	
	2.6.5	Giving a Suitable Diffusion Barrier Layer		
		(Interlayer) on the Substrates	45	
		2.6.5.1 Critical Review of Suitable Diffusion		
		Barrier Layer on the WC-Co Substrate	45	
RES	SEARC	H METHODOLOGY	54	
3.1	Introd	uction	54	
3.2	Prepar	reparing the Substrate Material		
	3.2.1	Cutting Workpieces by Means of the Linear		
		Precision Saw (Precision Cutter Machine)	56	
	3.2.2	Measuring the Surface Roughness	58	
	3.2.3	Measuring the Weight of Substrate	59	
3.3	Pre-Ti	reatment of Substrates	59	
3.4	Electr	oplating Technique	62	
	3.4.1	Electroplating Equipments	63	
		3.4.1.1 Tank	63	

ix

		3.4.1.2	Heater	63
		3.4.1.3	Rectifier	64
		3.4.1.4	Filter Pump	64
	3.4.2	Nickel I	Electroplating	65
		3.4.2.1	Nickel Plating Compositions	66
		3.4.2.2	The Nickel Solution	66
		3.4.2.3	Application of Current During Loading	67
	3.4.3	Chromit	um Electroplating	67
		3.4.3.1	Chromium Plating Compositions	67
		3.4.3.2	Preparation of the Chromium Solution	68
		3.4.3.3	Characteristic of Anode Material in	
			Chromium Plating	68
	3.4.4	Design	of Experiment Technique	69
3.5	Moun	ting and (Grinding the Substrate	74
3.6	Chara	cterisatio	n Technique (SEM)	75
RESULTS AND DISCUSSIONS 70				
4.1	Introd			76
	maou	uction		10
4.2	Sectio	on One- Pa	art One for Nickel Electroplating	76
4.2	Sectio 4.2.1	n One- Pa Mathem	art One for Nickel Electroplating atical and Statistical Analysis	76 76 77
4.2	Sectio 4.2.1 4.2.2	n One- Pa Mathem Respons	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition	76 76 77 77
4.2	Sectio 4.2.1 4.2.2	Mathem A.2.2.1	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition ANOVA Analysis	76 77 77 77 78
4.2	Sectio 4.2.1 4.2.2	Mathem A.2.2.1 4.2.2.2	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition ANOVA Analysis Model Adequacy Checking	76 77 77 78 81
4.2	Sectio 4.2.1 4.2.2	Mathem Respons 4.2.2.1 4.2.2.2 4.2.2.3	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition ANOVA Analysis Model Adequacy Checking Normal Probability Plot	76 77 77 78 81 82
4.2	Sectio 4.2.1 4.2.2	Mathem Respons 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition ANOVA Analysis Model Adequacy Checking Normal Probability Plot Main Effect and Interaction Analysis	76 77 77 78 81 82 83
4.2	Section 4.2.1 4.2.2 Section	Mathem Respons 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 on One – I	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition ANOVA Analysis Model Adequacy Checking Normal Probability Plot Main Effect and Interaction Analysis Part Two for Nickel Electroplating	76 77 77 78 81 82 83 83
4.2	Sectio 4.2.1 4.2.2 Sectio 4.3.1	Mathem Respons 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 on One – H ANOVA	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition ANOVA Analysis Model Adequacy Checking Normal Probability Plot Main Effect and Interaction Analysis Part Two for Nickel Electroplating A Analysis for Deposited Thickness	 76 76 77 78 81 82 83 86
4.2	Sectio 4.2.1 4.2.2 Sectio 4.3.1	Mathem Respons 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 on One – H ANOVA Respons	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition ANOVA Analysis Model Adequacy Checking Normal Probability Plot Main Effect and Interaction Analysis Part Two for Nickel Electroplating A Analysis for Deposited Thickness	76 77 77 78 81 82 83 86 88
4.2	Section 4.2.1 4.2.2 Section 4.3.1 4.3.2	Mathem Respons 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 on One – H ANOVA Respons ANOVA	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition ANOVA Analysis Model Adequacy Checking Normal Probability Plot Main Effect and Interaction Analysis Part Two for Nickel Electroplating A Analysis for Deposited Thickness se	 76 76 77 78 81 82 83 86 88
4.2	Section 4.2.1 4.2.2 Section 4.3.1 4.3.2	Mathem Respons 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 on One – H ANOVA Respons ANOVA	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition ANOVA Analysis Model Adequacy Checking Normal Probability Plot Main Effect and Interaction Analysis Part Two for Nickel Electroplating A Analysis for Deposited Thickness se A Analysis for Adhesion-Test Time	76 77 77 78 81 82 83 86 88 88
4.2	Section 4.2.1 4.2.2 Section 4.3.1 4.3.2 4.3.3	Mathem Respons 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 on One – H ANOVA Respons ANOVA Respons Results	art One for Nickel Electroplating atical and Statistical Analysis se - Thickness of Deposition ANOVA Analysis Model Adequacy Checking Normal Probability Plot Main Effect and Interaction Analysis Part Two for Nickel Electroplating A Analysis for Deposited Thickness se A Analysis for Adhesion-Test Time se from Both ANOVA Analyses	76 77 77 78 81 82 83 86 88 88 88 89 91

		4.4.1	Design	Expert	Output	for	Thickness	of	Coating
			Respons	se					93
			4.4.1.1	ANOV	A Analysi	is			93
			4.4.1.2	Normal	Probabili	ity Pl	ot		96
			4.4.1.3	Plot of I	Residuals	versu	us Fitted Val	lues	97
			4.4.1.4	Surface	and Cont	tour P	Plots		98
		4.4.2	Design l	Expert O	utput for A	Adhe	sion-Test Ti	me	
			Respons	se					99
			4.4.2.1	ANOV	A Analysi	is			99
			4.4.2.2	Normal	Probabili	ity Pl	ot		103
			4.4.2.3	Plot of I	Residuals	versu	us Fitted Val	lues	104
			4.4.2.4	3D Surf	face and C	Conto	ur Plot		105
		4.4.3	Overlay	the Cont	our Plots				106
		4.4.4	Optimu	n Parame	eters Com	binat	ion		107
		4.4.5	Discussi	ion					107
	4.5	Sectio	n Two –	Chromiu	m Electro	platin	ng on		
		Nicke	l Coated	Substrate	;				108
		4.5.1	Design of	of Experi	ment for	Chroi	nium		
			Electrop	olating – l	Part 1				109
			4.5.1.1	Discuss	ion				110
		4.5.2	Design of	of Experi	ment for	Chroi	nium		
			Electrop	olating – I	Part 2				112
		4.5.3	Conclus	ion of Pa	rt 1 and F	Part 2			
			for Chro	omium El	ectroplati	ng			114
	4.6	Final	Results of	Nickel a	nd Nicke	l-Chr	omium Coat	ting	114
		4.6.1	SEM Re	esults					115
5	CON	NCLUS	IONS AN	ND REC	OMMEN	IDAI	TIONS		122
	5.1	Result	ts and Cor	nclusions					122
	5.2	Recon	nmendatio	ons					125
REFERENC	ES								126
Appendix A									132-134

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Guidelines for designing an experiment	9
2.2	Materials and their suitable and unsuitable environments	12
2.3	Recommendations of nickel plating solution compositions	19
2.4	Recommendations of chromium plating solution compositions	23
2.5	Some of the outstanding properties of diamond	25
2.6	Typical conditions for diamond deposition in HFCVD	31
3.1	Compositions of nickel plating solution	66
3.2	Compositions of chromium plating solution	68
3.3	The initial factors and levels of interest for nickel electroplating	70
3.4	The second factors and levels of interest for nickel electroplating	70
3.5	Factors and levels of interest for chromium electroplating	70
4.1	Data for part one of nickel electroplating, the first-order model	78
4.2	The ANOVA table for response thickness, R1	79
4.3	Factor and level interest for second part of nickel electroplating	86
4.4	Data for part two of nickel electroplating, (the second first-order	
	model)	87
4.5	ANOVA table for response thickness of deposition, R1	88
4.6	ANOVA table for adhesion-test time response, R2	90
4.7	Central composite design for part three of nickel electroplating	92
4.8	Computer output from design-expert for fitting a model to the	
	deposited thickness response in third section of nickel	
	electroplating experiment	93
4.9	Computer output from design-expert for fitting a model to the	
	adhesion-test time response in third section of nickel	
	electroplating experiment	100

4.10	The optimum parameters combinations for thickness of coating			
	and adhesion-test time responses for nickel electroplating on			
	WC-Co substrates	107		
4.11	Factor and level interest for chromium electroplating	109		
4.12	Initial data for chromium electroplating on nickel coated			
	substrates	109		
4.13	Plating time in minutes for chromium deposit of average			
	thickness 1-3 micron for current density 12Amp/dm ² according			
	to the Canning Handbook	112		
4.14	Final results for chromium electroplating on nickel coated			
	substrates	113		

LIST OF FIGURES

FIGU	RE NO. TITLE	PAGE
2.1	Schematic of nickel electroplating on tungsten carbide	16
2.2	Variation in cathode efficiency with current density	22
2.3	Schematic diagram of diamond nucleation and growth in CVD	
	process	30
2.4	Schematic of a hot filament assisted CVD diamond growth	
	system	32
2.5	Schematic of the physical and chemical process occuring during	
	diamond CVD	33
2.6	Conventional removing of Co from near surface regions of	
	cemented carbides prior to deposition of diamond (left) and	
	proposed method of Co deactivation (right)	44
2.7	Flank wear of diamond coated cutting tools after different pre-	
	treatment and coating procedures	47
2.8	Three-dimension profilometry images of wear tracks on WC-	
	Co, Cr-N-coated, and multilayer (Cr-N+ diamond) coated	
	samples after 30 min dry sliding tests	48
2.9	Wear resistance of diamond coatings on boronized and	
	aluminized insert tips in comparison to conventionally etched	
	samples	49
2.10	Schematics of the phase transformation in the WCGC during the	
	process of diamond deposition	51
2.11	Schematic of the surface engineering approach for fabrication of	
	the nano-microcrystalline diamond film composite coating hard	
	metal cutting tools	53

2.12	Comparison of cutting performance for the microcrystalline and	
	Nano-micro composite diamond coated WC - 6 wt. % Co	
	inserts subjected to the surface	53
3.1	The outline of project	55
3.2	Row material of WC-Co (before cutting)	56
3.3	Sample of substrate (12×2 mm) (after cutting)	56
3.4	SOMET 4000 linear precision saw	57
3.5	Formtracer CS - 5000 (Roughness/Contour Measuring System) -	
	Mitutoyo	58
3.6	Balance - resolution-10 nanogram	59
3.7	BWT chamber for blasting	60
3.8	Harnisch + Rieth D-S 100A steam cleaner	61
3.9	Branson 2510 ultrasonic bath machine	62
3.10	The nickel and chromium electroplating equipments	65
3.11	Buehler automatic mounting machine	75
3.12	Scanning Electron Microscope (SEM) – Philips XL40	75
4.1	Normal probability plot of residuals82	
4.2	Half-normal probability plot of the effects for the response, R	83
4.3	The main effects plots for the thickness of coating response, R	85
4.4	The interaction plot for the thickness of coating response	85
4.5	Central composite designs for three factors	92
4.6	Normal probability plot of residuals for thickness of coating	
	response, R1	97
4.7	The residuals versus the fitted values for the thickness of	
	coating, R1	97
4.8	The contour plot for the thickness of coating response, R1	98
4.9	The three-dimensional response surface plot for the Thickness	
	of coating response, R1	99
4.10	Normal probability plot of residuals for adhesion-test time	
	response, R2	104
4.11	The residuals versus the fitted values for the adhesion-test time	
	response, R2	104
4.12	Contour plot of adhesion-test time response, R2	105

XV

4.13	Three dimensional response surface plots for the adhesion-test	
	time response, R2	105
4.14	Region of the optimum found by overlaying thickness of coating	
	and adhesion-test time response surface for nickel electroplating	
	on tungsten carbide substrate	106
4.15	Partial coating of chromium on nickel coated sample at current	
	density 10Amp/dm ²	110
4.16	Tearing the nickel surface in high current density (20Amp/dm ²)	
	of chromium electroplating, (a) bath temperature = 40 °C, (b)	
	and (c) bath temperature = $50 ^{\circ}C$	111
4.17	Coating the chromium on all surfaces with a slight burning on	
	the surface 15Amp/dm ²	111
4.18	Slight dull grey rough deposition of chromium in current density	
	= 12 Amp/dm ² , (a) bath temperature = 36 °C and (b) bath	
	temperature = $38 ^{\circ}\mathrm{C}$	113
4.19	Bright deposition of chromium on all surfaces in current density	
	= 12 Amp/dm ² , (a) bath temperature = 40 °C and (b) bath	
	temperature = 42 °C	114
4.20	Nickel coating on WC-Co substrate	114
4.21	Nickel and nickel-chromium coating on WC-Co substrate	115
4.22	The mounted cross-sectioned samples	116
4.23	SEM showing the cross-section and interface morphology and	
	the thickness of nickel coated WC-Co when bath temperature =	
	70 °C, current density = 24 Amp/dm ² , and plating time = 40	
	minutes	117
4.24	SEM showing the cross-section and interface morphology and	
	the thickness of nickel coated WC-Co when bath temperature =	
	70 °C, current density = 8 Amp/dm ² , and plating time = 60	
	minutes	117
4.25	SEM showing the cross-section and interface morphology and	
	the thickness of nickel coated WC-Co when bath temperature =	
	60 °C, current density = 6 Amp/dm ² , and plating time = 73.6	
	minutes	118

- 4.26 SEM showing the cross-section and interface morphology and the thickness of nickel coated WC-Co when bath temperature = 60 °C, current density = 6Amp/dm^2 , and plating time = 40 minutes
- 4.27 SEM showing the cross-section and interface morphology and the thickness of nickel coated WC-Co when bath temperature = 50 °C, current density = 4Amp/dm², and plating time = 60 minutes
- 4.28 SEM showing the cross-section and interface morphology and the thickness of nickel-chromium coated WC-Co when (for nickel; bath temperature = 58 °C, current density = 4Amp/dm², and plating time = 26.3 minutes) and (for chromium; bath temperature = 42 °C, current density = 12Amp/dm², and plating time = 15 minutes)
- 4.29 SEM showing the cross-section and interface morphology and the thickness of nickel-chromium coated WC-Co when (for nickel; bath temperature = 58 °C, current density = 4Amp/dm², and plating time = 26.3 minutes, thickness = 6.3µm) and (for chromium; bath temperature = 42 °C, current density = 12Amp/dm², and plating time = 15 minutes, thickness = 2.44 µm)
 4.30 EDX analysis for nickel coating
- 4.31 EDX analysis for nickel-chromium coating 121

119

LIST OF SYMBOLS

А	-	First factor or input variable investigated – bath temperature
		(°C)
Adeq. precision	on -	Adequate precision
Adj. R ²	-	Adjusted R-square
В	-	Second factor or input variable investigated – current density
		(Amp/dm^2)
С	-	Third factor or input variable investigated - plating time (min)
Cor. Total	-	Totals of all information corrected for the mean
CV	-	Coefficient of variation
d.f.	-	Degrees of freedom
Pred. R ²	-	Predicted R-square
Prob > F	-	Proportion of time or probability you would expect to get the
		stated F value
PRESS	-	Predicted residual error sum of squares
R1	-	Coating thickness response (µm)
R2	-	Adhesion-test time response (second)
R^2	-	Coefficient of determination
S.D.	-	Square root of the residual mean square

LIST OF APPENDICES

APPENDIX	TITLE	PAGE

A Calculating the thickness of nickel and chromium coating on WC-Co 132

CHAPTER 1

INTRODUCTION

Diamond has always been a material of intense interest for scientists due to its very strong chemical bonding. The structure of diamond leads to special mechanical and elastic properties. The hardness, molar density, thermal conductivity, sound velocity, and elastic module of diamond are the highest of all known materials while its compressibility is the lowest of all materials. Diamond also has the largest Young's modulus among all materials. The dynamic friction coefficient of diamond is the lowest among the materials of interest. Diamond possesses the highest thermal conductivity ever known. By virtue of its excellent hardness and low coefficient of friction, diamond can be used as cutting tools (Lee *et al.*, 1999).

1.1 Background of the Study

Major problems in using natural diamond for many applications are its high cost and availability only in small size and quantity. In addition to overcome these problems, scientists have been trying to develop a synthetic route to diamond production that would produce diamond crystals comparable in quality to natural diamond. Initial efforts were focused on developing synthetic diamond by compressing carbon in a High-Temperature (1550–2250 °C) and High-Pressure (50,000–100,000 atmosphere) cell, (HPHT). This technique requires massive equipment and is very expensive. Besides being expensive, these techniques can only

produce bulk crystals or powders, which further limit the applications of the HPHT synthetic diamond (Liu and Dandy, 1995).

Because of such problems, scientist tried to use another technique for producing high-quality diamond and in the last twenty years, chemical-vapour deposition (CVD) technique was found. The CVD process permits use of near netshape techniques to produce components that do not require extensive post deposition fabrication. Large-scale capability reduces CVD diamond cost and makes it a more attractive material for use in different applications.

The realization of deposition of diamond films on various kinds of substrates has great impact on the thin-film and coating technologies essential for improving surface quality in many industrial applications. The quality of the film and coating can, to some extent, determine the performance, and even the lifetime of a device. Within the last decade, a number of low-pressure diamond synthesis techniques have been developed. These techniques can be grouped into two major categories: thermally activated CVD and plasma activated CVD. A sound understanding of the nature of the CVD process, a better control of the diamond deposition to reduce or eliminate structural imperfections in the films to improve the quality of diamond films, and an increase of growth rates and deposition areas are some important areas requiring further investigation.

1.2 Background of Problem

The diamond coating applied should have good adhesion of the diamond film to the substrate in addition to increase the wear resistance, provide uniform coverage over flank and rake regions to ensure a stable machining process, and result in uniform grain size with low surface roughness to minimize the built-up edge effect. All of the above have to be achieved at an acceptable growth rate. Cemented tungsten carbide (WC-Co) cutting tools are the workhorse of the metal cutting industry because of their high wear resistance and fracture toughness properties. However, these tools wear rapidly when machining abrasive high Al-Si alloys and glass-epoxy composites. The application of surface overlay coatings to enhance the overall machining effectiveness of WC-Co by reducing the tools downtime; increasing the cutting productivity and improving the quality of the machined surface are becoming more and more attractive (Polini and Barletta, 2008). Polycrystalline diamond (PCD) tools on a WC-Co substrate were generally used for this purpose. However, because of their high cost, many researcher and industrial users are instead using diamond films deposited using CVD techniques which are relatively inexpensive, and could be deposited on tools of any geometry. Compared to an uncoated cemented carbide tool, the CVD diamond coated tool shows much greater abrasive wear resistance which results in up to ten times longer tool life, and less build-up edge and lower cutting forces which yield a better surface finish on the workpiece materials (Lee, 1998).

However, one of the largest barriers to be overcomed is the poor adhesion of diamond film on the cemented carbides substrate. This is due to (i) the large thermal mismatch of the diamond film with the cemented carbide tool and (ii) weak interface bonding resulting from graphite film formation during low-pressure diamond deposition due to the presence of the cobalt binder. There are many reports, which claim to reduce the thermal mismatch and to limit the graphite formation by etching cobalt and/or depositing interlayer as diffusion barriers. The Co from the hard metal is relatively reactive under diamond deposition conditions while the WC is more or less inert. In fact, during the initial steps of high temperature diamond deposition process, the leakage of cobalt from the Co-cemented carbide catalyzes the formation of interfacial sp²-carbon. This weak graphitic layer at the interface results in poor adhesion between the diamond coating and the substrate (Kamarajugadda, 1990).

1.3 Statement of Problem

Pre-treatment of the substrate, such as heat treatment and etching with chemical solutions, and use of interlayer play important role in determining the adhesion of the diamond coating onto hard metal and the final properties of coated parts. The negative activity of the cobalt and thermal mismatch must be reduced in order to get a good adhesion of the diamond coating on the hard-metal substrate.

Using the etching process to avoid the negative effects of Co lead to corrosion layer, deep pits of deficient Co on the substrate surface and increase the roughness of surface, which directly leads to the reduction of the mechanical properties and applied range of the cutting tools. For this reason, these problems, this study focuses on using interlayer as the cobalt diffusion barrier.

Many researchers have used physical vapour deposition (PVD) and CVD techniques for coating interlayer on WC-Co. The problems for using these techniques are their high capital and maintenance cost and coating interlayer on substrate in high temperature (around 800 °C especially in CVD technique) leads to the migration of cobalt to the interlayer material. Because of these problems, this study is applied a novel technique for coating interlayer on substrate which is much more cheaper than PVD and CVD technique and also coating process can be done at very low temperature (around 50-70°C) which is very useful for preventing the migration of cobalt to the interlayer material. This technique involves the electroplating process whose usefulness for the coating of material has been proved.

1.4 Objective of the Study

i. To analyze the thickness and adhesion of nickel coating on WC-Co substrate via the electroplating process prior to chromium electroplating

- To analyze the thickness and adhesion of chromium coating on nickel coated WC-Co via the electroplating process prior HFCVD diamond coating process
- iii. To achieve the thickness of nickel-chromium coating below than 10µm

1.5 Scope of the Study

- i. The substrate material is limited to tungsten carbide (WC) with 6wt% of Co.
- The coating materials are limited to nickel and chromium and the combined thickness must be below 10μm.
- iii. DOE technique and Design Expert software, are used to analyze the thickness and adhesion of the coatings.

1.6 Thesis Layout

This thesis consists of five chapters. Chapter 1 is the introduction of this study. Backgrounds of the study, background of problem, statement of problem, objective of the study, scope of the study and thesis layout are presented in this chapter.

Chapter 2 contains the literature review of the DOE techniques, electroplating technique, and pre-treatment methods. In the electroplating process the focus is on the nickel and chromium electroplating process. Several solutions which have been used for etching the substrate surface and also several materials for interlayer are reviewed.

Chapter 3 is concerned with the research methodology for this study. In this chapter, the experimental steps from cutting the raw material until quantitative analyzing are discussed in detail.

Chapter 4 is concerned with the analysis of the result using the Design Expert Software. In this chapter, the optimum conditions for variable parameters of nickel and chromium electroplating processes have been found.

Chapter 5 summarizes the conclusions and results of experiments in this project and some recommendations for future work are also made.