CLONING OF INFLUENZA B NS1 GENE IN Escherichia coli

ALI ADEL DAWOOD

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Biotechnology)

FACULTY OF BIOSCIENCES AND BIOENGINEERING UNIVERSITI TEKNOLOGI MALAYSIA

NOVEMBER 2010

To my beloved parents & my wife;

Thanks for the dim of light when all I see were darkness...

Thanks for giving me the best things in my life ...and finally

Thanks for your sacrifices to make me a better person each day....

ACKNOWLEDGEMENT

In the Name of Allah, the Most Benevolent, Most Merciful

Firstly, I thank Allah for giving me the patience, persistency and his blessings throughout my completing this project. I would like to express my utmost gratitude and special appreciation to my supervisor Dr. Chan Giek Far, for encouragement, guidance, support, advices and care helped me in all the time of research and writing of this thesis.

I am deeply indebted and grateful to my family especially my mother, father and my wife for their love, support and praying for my success in every time, their patience and kindness in helping and guiding me in every part of this project. No word can express my appreciation for their love.

Special thanks to all the staffs of the Faculty of Biosciences and Bioengineering and members of the labs for not only helping me with my study but also making my stay in the lab a very pleasurable and memorable one.

Sincere appreciation and thanks are also extended to all staff of Mosul College of Medicine especially members of the Department of Anatomy for their encouragement, guidance, advices even in some words.

Last but not least, I would like to thank to people and everyone who has helped me direct or indirectly towards completing this research project.

ABSTRACT

The non-structural NS1 protein of influenza B virus is a multifunctional virulence protein which is involved in the transport of viral RNA. Inside the host cell, NS1B antagonizes and inhibits the α/β interferon system which is induced as host antiviral response. Moreover, it prevents the activation of double-stranded-RNA activated protein kinase (PKR) by binding to dsRNA and inhibits the maturation of *GAS8* (gene of tumor suppressor). NS1 protein is utilized as a target for diagnostic of influenza viruses in infected animals. pUC57 carrying NS1 synthetic gene of influenza B was attempted to be transformed into *Escherichia coli* strain BL21(DE3). NS1B was extracted and attempted to be cloned into prokaryotic expression vectors pET-32b, pET-32a, pQE-81L and pQE-80L, respectively using restriction digestion enzymes (*Sac*I, *Pst*I and *Hin*dIII). Then, recombinant DNA was attempted to be transformed into *Escherichia coli* strains BL21(DE3) and DH5 α .

ABSTRAK

Protein non-struktur NS1 virus influenza B adalah virulensi pelbagai fungsi dan terlibat dalam pengangkutan RNA virus. Di dalam sel perumah, NS1B menghalang sistem interferon α/β yang menyebabkan tindakbalas antivirus oleh perumah. Selain itu, protein NS1 mencegah pengaktifan *doublestranded RNA-aktif protein kinase* (PKR) dengan cara mengikat dsRNA dan menghalang pematangan *GAS8* (gen tumor supresor). NS1 protein digunakan sebagai target untuk diagnostik terhadap virus influenza pada haiwan yang dijangkiti. pUC57 membawa gen NS1 sintetik influenza B diklonkan ke dalam *Escherichia coli* strain BL21(DE3). NS1B diekstraksi dan diklon ke vektor ekspresi prokariotik pET-32b, PET-32a, pQE-81L dan pQE-80L masingmasing dengan menggunakan enzim pembatas (*SacI, Pst*I dan *Hin*dIII). Kemudian DNA rekombinan ditransformasikan ke dalam strain *Escherichia coli* BL21 (DE3) dan DH5 α .

TABLE OF CONTENTS

TITLE

CHAPTER

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF SYMBOLS/ABBREVIATIONS	xvi

LIST OF APPENDICES

1	INTRODUCTION		
	1.1	Influenza	1
	1.2	Influenza virus	1
	1.3	Problem statement of the study	2
	1.4	Objective of the study	2
	1.5	Scope of the study	3
	1.6	Significant of the study	3
2	LIT	ERATURE REVIEW	4
	2.1	Overview of influenza	4

2.1.1 Influenza infection 4

PAGE

xix

	2.1.2	Treatm	ent	6
	2.1.3	Preven	tative measures for human	
		Influer	nza virus	7
	2.1.4	Isolatio	n of influenza virus	7
2.2	Influe	nza virus		8
	2.2.1	Viral ge	enome	8
	2.2.2	Types of	f influenza virus	8
	2.2.3	Lifecyc	le of influenza virus	10
2.3	Influe	nza B vir	us	11
2.4	Nonst	ructural (NS1) protein	14
	2.4.1	Nonstru	actural protein NS1 of	
		Influenz	za B virus	15
	2.4.2	function	and influences of NS1	
		protein		17
		2.4.2.1	NS1B binds to ISG-15	
			protein	18
		2.4.2.2	NS1B inhibits and antagoni-	
			-sts α/β interferon system	19
		2.4.2.3	NS1 inhibits nuclear export	
			of mRNA	21
		2.4.2.4	NS1 protein interacts with	
			GAS8	22
		2.4.2.5	NS1 protein inhibits pre-	
			mRNA	23
		2.4.2.6	NS1 protein prevents	
			activation of PKR	24
2.5	Previo	ous studie	es of cloning and expression	
	of NS	S1 gene		25
MA	TERIA	LS AND	METHODS	29
3.1	Exper	rimental I	Design	29
	-			

3

3.2	Mater	rials	35			
	3.2.1	Bacterial strains	35			
	3.2.2	Chemicals	35			
	3.2.3	pET vectors	35			
	3.2.4	pQE vectors	37			
	3.2.5	NS1B Synthetic Gene	38			
3.3	Metho	ods	40			
	3.3.1	Liquid and solid media preparation	40			
		3.3.1.1 Luria Bertani agar and				
		broth	40			
		3.3.1.2 Preparation of ampicillin				
		stock solution	40			
	3.3.2	Preparation of competent cells	41			
3.4	Trans	formation pUC57-NS1B into E. coli				
	BL21	(DE3) competent cells	41			
3.5	Isolation of pUC57-NS1B plasmid 42					
3.6	Agaro	Agarose gel electrophoresis43				
3.7	Isolat	Isolation of pET-32b plasmid44				
3.8	Single digestion 44					
3.9	DNA	Extraction	44			
3.10	Deter	mination of DNA concentration	45			
3.11	Ligat	ion NS1B with pET-32b	46			
3.12	Trans	sformation of recombinant product	46			
3.13	Isola	tion of pQE-81L plasmid	47			
3.14	Amp	lification of NS1B gene using				
	Poly	merase Chain Reaction (PCR)	47			
	3.14.	.1 Primer design	47			
	3.14	2 Polymerase chain reaction	48			
3.15	Dou	ble digestion using <i>Pst</i> I and <i>Hin</i> dIII				
	restr	riction enzymes in one step	49			
2 16	Doui	ble digestion using restriction				

	enzymes in two steps	50
3.17	Ligation and transformation into DH5 α	51
3.18	Screening of positive colonies	52
	3.18.1 Chelex 100 extraction method	52
	3.18.2 PCR amplification and gel	
	electrophoresis to detect NS1B	53
3.19	Isolation of pET-32a plasmid	53
3.20	Amplification of NS1B gene using	
	Polymerase Chain Reaction (PCR)	54
	3.20.1 Primer design	54
3.21	Double digestion using SacI and HindIII	
	restriction enzymes in one step	55
3.22	Double digestion using SacI and HindIII	
	restriction enzymes in two steps	55
3.23	Ligation, transformation into E. coli BL21	
	(DE3) and and screening of colonies	57
3.24	Isolation plasmid (pQE-80L)	57
3.25	PCR amplification, double digestion,	
	ligation, transformation into DH5 α and	
	screening of colonies	58
RES	ULTS AND DISCUSSION	59
4.1	Transformation of pUC57-NS1B into	
	E. coli BL21(DE3)	59
4.2	Cloning of pET-32b-NS1B into E. coli	
	BL21(DE3)	59
4.3	Cloning of pQE-81L-NS1B into E. coli	
	DH5a	61
4.4	Cloning of pET-32a-NS1B into E. coli	
	BL21(DE3)	65
4.5	Cloning of pQE-80L-NS1B into E. coli	

4

	DH5a	68
	4.6 Confirmation of ligation	69
5	CONCLUSION AND FUTURE WORKS	71
	5.1 Conclusion	71
	5.2 Future works	72

REFERENCES	74
Appendices A-B	79-80

LIST OF TABLES

TITLE

TABLE NO.

3.1	Single digestion components in PCR tube	
	using <i>Hin</i> dIII	44
3.2	Ligation mix components of pET-32b and	
	NS1B	46
3.3	The pUC57 primers for PCR of NS1B gene	
	from pUC57-NS1B	48
3.4	PCR reaction components of pUC57-NS1B	48
3.5	PCR cycle	49
3.6	Double digestion components in PCR tube	
	using <i>Pst</i> I and <i>Hin</i> dIII	50
3.7	Double digestion components in PCR tube	
	using <i>Hin</i> dIII(1 st step)	50
3.8	Double digestion components in PCR tube using	
	<i>Pst</i> I(2 nd step)	51
3.9	The pQE primers for PCR	53
3.10	Primers containing SacI and HindIII restriction	
	enzyme sites used to amplify NS1B gene	54
3.11	Double digestion components in PCR tube	
	using <i>Sac</i> I and <i>Hin</i> dIII	55
3.12	Double digestion components in PCR tube using	
	<i>Hin</i> dIII(1 st step)	56

PAGE

3.13	Double digestion components in PCR tube using		
	$SacI(2^{nd} step)$	56	
3.14	Primers containing SacI and HindIII restriction		
	enzyme sites used to amplify NS1B gene	57	

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Life cycle of influenza virus	10
2.2	Influenza virus structure	11
2.3	Electron microscope image of influenza B	13
2.4	Influenza virus particles on cells lining	14
2.5	Homology modeling of RNA binding domain	
	of NS1B	16
3.1	Flow chart of experimental design	30
3.2	Cloning of pET-32b-NS1B into E. coli	
	BL21(DE3)	31
3.3	Cloning of pQE-81L-NS1B into <i>E. coli</i> DH5α	32
3.4	Cloning of pET-32a-NS1B into E. coli	
	BL21(DE3)	33
3.5	Cloning of pQE-80L-NS1B into <i>E. coli</i> DH5α	34
3.6	pET-32 vectors	36
3.7	pQE-80L vector	37
3.8	pQE-81L vector	38
3.9	pUC57-NS1B gene construct	39
4.1	Restriction digestion by <i>Hin</i> dIII.	60
4.2	Transformation of pET-32b-NS1B into	
	competent E. coli BL21(DE3)	61
4.3	Plasmid isolation and digestion of pUC57-	

	NS1B and pQE-81L	62
4.4	PCR amplification of NS1B	63
4.5	Transformation of pQE-81L-NS1B into	
	competent DH5a	64
4.6	PCR of recombinant pQE-81L-NS1B	65
4.7	Miniprep of pUC57-NS1B and PCR	
	amplification of NS1B	66
4.8	Transformation of pET-32a-NS1B into	
	competent E. coli BL2(DE3)	67
4.9	PCR of recombinant pET-32a-NS1B	67
4.10	Transformation of pQE-80L-NS1B into	
	competent DH5a	68
4.11	PCR of recombinant pQE-80L-NS1B	69
4.12	PCR amplification	70

LIST OF SYMBOLS/ ABBREVIATIONS

AMP	-	Adenosine monophosphate
ATP	-	Adenosine triphosphate
bp	-	Base pairs
BSA	-	Bovine Serum Albumin
α/β	-	Alfa / Beta interferon
°C	-	Degree Celsius
cDNA	-	Clone deoxyribonucleic acid
del NS1	-	Deletion nonstructural 1
dH ₂ O	-	Deionized water
dNTP	-	Deoxynucleoside triphosphate
DNA	-	Deoxyribonucleic acid
dsRNA	-	double-stranded RNA
E. coli	-	Escherichia coli
EDTA	-	Ethylene diamenetetraacetate
ELISA	-	Enzyme linked immunosorbent assay
g	-	Gram
GAS	-	Growth arrest specific gene
GST	-	Glutathione S-transferase
HA	-	Hemagglutinine
His-Tag	-	Histidine tagged
IFN	-	Interferon
IPTG	-	Isopropyl β-D-1-thiogalactopyranoside
IRF	-	Interferon regulator factor

ISG	-	Interferon stimulate gene
kb	-	Kilo base
KDa	-	Kilo dalton
LB	-	Luria Bertani
LPAI	-	Low pathogenicity avian influenza
М	-	Molar
mM	-	Milmolar
MCS	-	Multi cloning site
ml	-	Milliliter
mg	-	Milligram
min.	-	Minutes
μg	-	Microgram
μ1	-	Microliter
μm	-	Micromter
MgCl ₂	-	Magnesium chloride
mRNA	-	Messenger ribonucleic acid
NA	-	Neuraminidase
NEP	-	Nuclear export protein
NES	-	Nuclear export sequence
ng	-	Nanogram
NLS	-	Nuclear localization sequence
NMR	-	Nuclear Magnetic Resonance
NS1	-	Nonstructural 1
OD	-	Optical density
PACT	-	Protein activator of the interferon-induced protein
		kinase
PCR	-	Polymerase chain reaction
PKR	-	Protein kinase
RNA	-	Ribonucleic acid

RNP	-	Ribonucleoprotein
rpm	-	Rotation per minute
RT-PCR	-	Reverse transcription polymerase chain reaction
SDS-PAGE	-	Sodium Dodecyl Sulphate- Polyacrilamide Gel
		Electrophoresis
sec.	-	Seconds
SIV	-	Simian immunodeficiency virus
ssRNA	-	Single strand RNA
TAE	-	Tris-acetate-EDTA
Tris	-	2-hydroxymethyl-2-methyl-1,3-propanediol
U6 SnRNA	-	U6 small nuclear ribonucleoprotein
UV	-	Ultraviolet
V	-	Volts

LIST OF APPENDICES

APPENDEX	TITLE	PAGE
А	NS1B gene sequence (870 bp) of Influenza B virus	79
	(B/Taiwan/45/2007)	
В	NS1B protein sequence (281 amino acids)	80

CHAPTER 1

INTRODUCTION

1.1 Influenza

Influenza is a contagious respiratory viral illness of global importance. The disease was caused by influenza viruses known as flu. The most common symptoms of the flu are chills, fever, sore throat, muscle pains, severe headache, coughing, weakness and general discomfort. Some influenza viruses can cause more severe diseases than the common cold like pneumonia. Influenza viruses spread around the world and can be transmitted through the air by coughs, sneezes, creating aerosols containing the virus. This can also be transmitted by direct contact with infected animals or humans (Metreveli *et al.*, 2006; Spickler *et al.*, 2009).

1.2 Influenza virus

Influenza viruses have unique features of reverse sense single strand RNA. They have been classified into three distinct types: A, B and C. Influenza B viruses are mainly found in humans. These viruses can cause epidemics in human populations, but have not been responsible for pandemics. Influenza B viruses comprised of single group of hemagglutinin and neuraminidase antigens since their first isolation in 1940 (Nerome *et al.*, 1998). Influenza B viruses are categorized into lineages rather than subtypes and are also classified into strains. Influenza B viruses undergo antigenic drift, though it occurs more slowly than in influenza A viruses (Metreveli *el al.*, 2006; Spickler *et al.*, 2009). Twelve antigenic variants were distinguished by a panel of monoclonal antibodies appeared to circulate in the 1981–1982 epidemic season in Japan. The evolutionary lineages of influenza B viruses since 1988 have been represented by two epidemic strains B/Victoria/2/87 and B/Yamagata/16/88 (Nerome *et al.*, 1998).

1.3 Problem statements of the study

The main problem of this study is to clone NS1B gene in pET-32b, pET-32a, pQE-81L, and pQE-80L vectors for transformation into *Escherichia coli* BL21(DE3) and DH5α.

1.4 **Objective of the study**

The objective of this research was to clone of NS1B synthetic gene into pET-32b, pET-32a, pQE-81L, and pQE-80L vectors. The recombinant constructs were transformed into *E. coli* hosts.

1.5 Scope of the study

The scope of this study encompassed the cloning of NS1B gene of influenza B into pET-32b, pET-32a, pQE-81L, and pQE-80L vectors, which are subsequently transformed into competent *E. coli* BL21(DE3) and DH5α.

1.6 Significant of the study

Recombinant NS1 fusion protein of high purity is more significant for detection of antigenicity. Successful cloning and overexpression of NS1 gene are useful for specific diagnostic and further applications. This reverse genetic system will allow studies to explore the functions of NS1B domains during the replication cycle and to assess their contributions to the pathogenesis and virulence of influenza B virus.