UTILIZATION OF OPTICAL SATELLITE DATA FOR MEASURING CARBON DIOXIDE AT FELDA MAOKIL

MUHAMMAD NOOR HAZWAN BIN JUSOH

A project report submitted in partial fulfillment of the requirement for the award of the degree of Master of Engineering (Civil - Environmental Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2009

To my beloved mother and father

JUSOH JAAFAR KAMARIAH CHE SOH

&

My loving brothers and sisters

MUHAMMAD NOOR HISYAM MUHAMMAD NOR HANIF NUR MADIHAH NUR NADIAH SABIHAH MUHAMMAD NOOR BAIHAQI NUR HABIBAH SAFIAH MUHAMMAD NOOR SUFFIAN

ACKNOWLEDGEMENTS

"In the Mighty Name of Allah, The Most Beneficent, The Most Merciful"

Firstly, I would like to express my sincere gratitude and love to my dear parents Jusoh Jaafar and Kamariah Che Soh and also my cherished brothers and sisters for the consistent support, guidance and encouragement during my study.

Secondly, a lot of thanks to my supervisor Dr. Mohd Badruddin Mohd Yusof for his attention and advice in order to ensure this thesis are completed. Not to forget sincere appreciation to my co-supervisor, PM. Dr. Ab. Latif Ibrahim from whom I received the necessary guidance throughout my final project. Thank you so much to both of you.

Lastly, I express very thankful to my friends who had shared ideas and knowledge that contributed on my writing. I also wish to thank all staffs of Environmental Engineering Laboratory, Universiti Teknologi Malaysia; Pak Usop, Mr. Azrin and Mr. Suhaimi because of their passionate and helpful I'm manage to make this Master's project much easier.

Thank you so much for all of you which I'm not mention here. Your contribution directly or indirectly I always keep in my heart.

Thank you...

ABSTRACT

Currently there are many developments especially in construction's sectors where a lot of air pollutants have been produced and resulted in the degradation of the environment. The issue has grown in importance in light of recent global warming. This study is based on a short term observation of carbon dioxide (CO₂) released due to a road construction at Felda Maokil in Segamat. The method that has currently been used to determine Net Primary Productivity (NPP) at global scale using satellite data known as Moderate Resolution Imaging Radiometer (MODIS). The purpose of this study is to measure the amount carbon dioxide (CO_2) that may be absorbed by oil palm tree for an area of about 450 hectares in Oil Palm plantation with low resolution MODIS satellite data. Several objectives have been carried out such as to determine the amount of Net Primary Productivity (NPP) in Felda Maokil, to assess the accuracy of MODIS data by validation process with *in-situ* data and lastly, to assess the correlation of NPP value from 2001, 2005 and 2009. The data were obtained through two sources which are *in-situ* as primary source and satellite data as secondary source. Data from four year interval had been chosen to insure more variations during the study period. Therefore the study was verified by the NPP values for year 2001, 2005 and 2009. The resulted acquired presented the mean NPP values for the three years processed were 468.169 g Cm^2/y (2001), 560.685 g Cm^2/y (2005) and 541.781 g Cm^2/y (2009). Meanwhile, Normalized Difference Vegetation Index (NDVI) analysis had gave the resulted as 0.696 (2001), 0.863 (2005) and 0.716 (2009). As a conclusion, the mean NPP values for three years of MODIS images processed have shown similarities and road development had gave some impacts on these results.

ABSTRAK

Pada masa kini terdapat banyak aktiviti pembangunan yang melibatkan sektor pembinaan telah menyebabkan pembebasan udara tercemar ke atmosfera. Fenomena pencemaran ini secara tidak langsung telah membawa kepada berlakunya pemanasan global. Oleh itu, kajian ini dijalankan di Felda Maokil, Segamat bagi menentukan kandungan karbon dioksida (CO_2) yang disebabkan oleh pembinaan jalan. Kaedah yang digunapakai adalah data satelit yang turut dikenali sebagai Moderate Resolution Imaging Selain itu, pengukuran CO2 dapat diketahui bilangannya Radiometer (MODIS). berpandukan terma Net Primary Productivity (NPP). Tujuan kajian ini dijalankan adalah untuk mendapatkan kandungan CO2 yang mampu diserap oleh pokok kelapa sawit di dalam kawasan ladang kelapa sawit berkeluasan 450 hektar. Kajian ini mengandungi beberapa objektif iaitu menentukan jumlah kandungan NPP di Felda Maokil, menilai ketepatan data MODIS dengan melakukan proses pengesahan data dari tapak kajian dan menilai hubungan bagi data NPP untuk tahun 2001, 2005 dan 2009. Terdapat dua kaedah dalam mendapatkan data kajian iaitu persampelan data di tapak kajian (sumber utama) dan data satelit (sumber kedua). Perbezaan 4 tahun bagi tahun kajian dipilih supaya banyak perubahan dapat dilihat bagi tempoh kajian dijalankan. Keputusan kajian akan disahkan berdasarkan nilai NPP bagi tahun 2001, 2005 dan 2009. NPP bagi tiga tahun data proses ialah 468.169 g C m²/y (2001), 560.685 g C m²/y (2005) dan 541.781 g Cm²/y (2009). Sementara itu, analisis untuk Normalized Difference Vegetation Index (NDVI) memberikan keputusan 0.696 (2001), 0.863 (2005) dan 0.716 (2009). Sebagai kesimpulan, nilai purata NPP telah menunjukkan persamaan untuk tiga tahun data MODIS. Disamping itu, aktiviti pembinaan jalan turut memberi impak terhadap keputusan kajian.

TABLE OF CONTENT

CHAPTER

TITLE PAGE

TITLE PAGE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV
LIST OF APPENDICES	xiv

CHAPTER	1		INTRODUCTION	1
	1.1		General	1
	1.2		Problem Statement	3
	1.3		Aim and Objectives	4
	1.4		Scope of the Study	4
	1.5		Expected Finding	5
CHAPTER	2		LITERATURE REVIEW	6
	2.1		Carbon Sequestration	6
	2.2		Carbon Cycle	7
	2.3		Sources of Carbon Dioxide	7
		2.3.1	Transportation	8
		2.3.2	Industrial	9
		2.3.3	Generating Electricity	10

	2.4		Carbon in Atmosphere	12
	2.5		Atmospheric Increase of Carbon Dioxide	12
	2.6		Carbon Pollutants	13
	2.7		Pollutant Materials	13
	2.8		Pollutant Deposition	14
	2.9		Types of Gasses in The Atmosphere	14
		2.9.1	Carbon Monoxide	15
		2.9.2	Nitrogen Oxides	15
	2.10		Photosynthesis	16
	2.11		Functioning of Photosynthesis Process	17
	2.12		Classification of Ecosystem Types	18
	2.13		The Basis of Net Primary Productivity	20
	2.14		Potential Net Primary Productivity	21
	2.15		Annual Assessment of NPP Allocation	21
	2.16		Limiting Factors	22
		2.16.1	Shortage of Nutrients	23
		2.16.2	Some Climatic Factors	23
		2.16.3	Carbon Dioxide	26
	2.17		Malaysia's Legislation	26
	2.18		Kyoto Protocol	27
	2.19		MODIS Satellite Data	30
	2.20		Carbon Dioxide Capture and	
			Geologic Storage	31
		2.20.1	Techniques of Carbon Dioxide Capture	33
		2.20.2	Geological Storage of Carbon Dioxide	36
	2.21		Previous Research on Related Studies	
			Using MODIS Satellite Data	38
CHAPTER	3		METHODOLOGY	41
	3.1		Introduction	41
	3.2		Study Area	41
	3.3		Data Collection	42
	3.4		Carbon Dioxide Meter	43
	3.5		Algorithm	44
	3.6		Spectral Bands	46
	3.7		ERDAS Software	47

CHAPTER	4		RESULTS AND DISCUSSIONS	49
	4.1		Image for Propose Location from	49
			MODIS Data	
	4.2		The Amount of Net Primary Productivity	
			And Normalized Difference	
			Vegetation Index	53
	4.3		Correlation between Net Primary	
			and Normalized Difference Vegetation	
			values (2001, 2005 and 2009)	62
	4.4		Relationship between of APAR and	
			MODPRI at Study Area	64
	4.5		Relationship between Field Measurement	
			and Meteorological Data	69
		4.5.1	Reliability Test	69
		4.5.2	Student's <i>t</i> -test	71
		4.5.3	Analysis of Variance (ANOVA)	71
		4.5.4	Pearson's Correlation Coefficient	72
	4.6		Effects of Road Construction in	
			Carbon Absorption	74
CHAPTER	5		CONCLUSION AND	
			RECOMMENDATIONS	80
	5.1		Conclusion	80
	5.2		Recommendations	81
REFFERENCES				84
APPENDICES				87

LIST OF TABLES

TABLE NO	TA	BL	Æ	N	0
----------	----	----	---	---	---

TITLE

PAGE

Table 2.1	U.S. Carbon Dioxide Emissions from Transportation Sector	
	Energy Consumption	8
Table 2.2	Emissions which Produced by Industrial Processes	10
Table 2.3	Amount of Atmospheric Carbon Monoxide	
	for Primary Sources	16
Table 2.4	Greenhouse Gas Emissions for Some Countries from	
	the year 1992 to 2007	30
Table 2.5	Change in Greenhouse Gas Emissions (1990 to 2004)	31
Table 2.6	The Amount of Annual Carbon Dioxide Emissions	
	from Major Industrial Sources	35
Table 2.7	MODIS – Related Research Topics	37
Table 4.1	Net Primary Production Values at Felda Maokil	
	in unit of g C m^2/d	55
Table 4.2	Normalized Difference Vegetation Index Values	
	at Felda Maokil in unitless	55
Table 4.3	APAR values at Felda Maokil	67
Table 4.4	MODPRI values at Felda Maokil	67
Table 4.5	Net Primary Production values at tolerable range	72
Table 4.6	Normalized Difference Vegetation Index	
	values at tolerable range	72
Table 4.7	ANOVA for NPP	74
Table 4.8	ANOVA for NDVI	74
Table 4.9	Correlation between NPP and NDVI	75

LIST OF FIGURES

FIGURE NO

TITLE

PAGE

Figure 2.1	The Carbon Dioxide Emissions from Industrial Activities	
	and Land Use Change	11
Figure 2.2	Schematic Map of the Major Biomass of the World	20
Figure 2.3	Annual NPP and Annual Precipitation	21
Figure 2.4	The Length of the growing season (P) in the months, The	
	Average Temperature (T) during the growing season in	
	°C, and The Day Length (D) in hours as a function of	
	latitude	26
Figure 2.5	The Relationship between Dry Matter Production (P)	
	and Total Transpiration (W) of Oats Grown in Containers	27
Figure 2.6	The Flow of Carbon Dioxide According to the Concept	
	of Carbon Dioxide Capture and Geological Storage	34
Figure 2.7	Carbon Dioxide Capture and Storage	37
Figure 2.8	The Processes that occur from Carbon Dioxide	
	Capture Techniques	37
Figure 2.9	The Geological Storage Options for Carbon Dioxide	39
Figure 3.1	The Project Planning for the Road Constructions that	
	shorten the trip between Chaah and Bukit Kepong	44
Figure 3.2	Carbon Dioxide Meter Model 7515	46
Figure 3.3	The Lists of Spectral Bands to Produce MODIS	
	Satellite Image	49
Figure 3.4	Work Schedule	50
Figure 4.1	MODIS Satellite Image for Year 2001	52
Figure 4.2	MODIS Satellite Image for Year 2005	53
Figure 4.3	MODIS Satellite Image for Year 2009	54

Figure 4.4	Standard Deviation for NPP Value at Felda Maokil	
	(2001, 2005 and 2009)	56
Figure 4.5	Standard Deviation for NDVI Value at Felda Maokil	
	(2001, 2005 and 2009)	56
Figure 4.6	The Different Colour of Net Primary Production (2001)	58
Figure 4.7	The Different Colour of Net Primary Production (2005)	59
Figure 4.8	The Different Colour of Net Primary Production (2009)	60
Figure 4.9	The Different Colour of Normalized Difference	
-	Vegetation Index (2001)	61
Figure 4.10	The Different Colour of Normalized Difference	
-	Vegetation Index (2005)	62
Figure 4.11	The Different Colour of Normalized Difference	
-	Vegetation Index (2009)	63
Figure 4.12	Scatter Plots of NPP and NDVI values	
-	in year 2001 at Felda Maokil	64
Figure 4.13	Scatter Plots of NPP and NDVI values	
-	in year 2005 at Felda Maokil	65
Figure 4.14	Scatter Plots of NPP and NDVI values	
-	in year 2009 at Felda Maokil	65
Figure 4.15	A Graph of APAR values at different years	67
Figure 4.16	A Graph of MODPRI values at different years	68
Figure 4.17	Relationship between APAR and MODPRI	
	at Felda Maokil (2001)	69
Figure 4.18	Relationship between APAR and MODPRI	
	at Felda Maokil (2005)	69
Figure 4.19	Relationship between APAR and MODPRI	
	at Felda Maokil (2009)	70
Figure 4.20	The Range of Area Covered in A Normal Distribution	72
Figure 4.21	Location of Road Construction at Study Area	
	(2001) based on NPP	78
Figure 4.22	Location of Road Construction at Study Area	
	(2005) based on NPP	79
Figure 4.23	Location of Road Construction at Study Area	
	(2009) based on NPP	80
Figure 4.24	Location of Road Construction at Study Area	
	(2001) based on NDVI	81

Figure 4.25	Location of Road Construction at Study Area	
	(2005) based on NDVI	82
Figure 4.26	Location of Road Construction at Study Area	
	(2009) based on NDVI	83

LIST OF SYMBOLS

CO ₂	-	Carbon Dioxide
CFC	-	Chlorofluorocarbons
CH ₄	-	Methane
Κ	-	Potassium
N_2O	-	Nitrus Oxide
Ν	-	Nitrogen
Р	-	Phosphorus

LIST OF ABBREVIATIONS

CCS	-	Carbon Dioxide Capture and Geologic Storage
DOE	-	Department of Environmental
EOS	-	Earth Observing System
EOR	-	Enhanced Oil Recovery
ECBMR	-	Enhanced Coal Bed Methane Recovery
GHG	-	Greenhouse Gas
GPP	-	Gross Photosynthetic Products Produced
IEA	-	International Energy Agency
LUC	-	Light Use Efficiency
MODIS	-	Moderate-Resolution Imaging Spectroradiometer
MRSO	-	Malaysian Rectified Skew Orthomorpic
NPP	-	Net Primary Production
SBRS	-	Santa Barbara Remote Sensing
UNFCCC	-	UN Framework Convention on Climate Change
WEC	-	World Energy Council

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Manual Calculation for Reliability Test	90
В	Manual Calculation for Student's t-test	92
С	Manual Calculation for Analysis of Variance (ANOVA)	94

CHAPTER 1

INTRODUCTION

1.1 General

Recently, human activities have contributed more critical problems to the environment. There are a lot of environmental issues that arise since last decade such as water quality, solid waste, air pollution, noise pollution, etc. Besides that, the climate change that occurred has some side effects from this matter.

As example, acid rain where emissions of sulphur oxides, nitrogen oxides and hydrocarbons are transformed in the atmosphere into sulphate and nitrate particles. Combination of sunlight and water vapour will produce a complex chemical reaction in mild sulphuric or nitric acid. This acid rain will occurs when pH levels falls below 5.6. Another effect that arise is global warming where solar radiation that come to earth is not fully release from atmosphere and the results it increase the earth temperature since more radiation is absorbed by the earth's surface; melting the ice at Antarctic and Antarctica which lead to increase water level. The situation happen where more greenhouse gas; carbon dioxide (CO_2), chloroflorocarbons (CFC), methane (CH_4), nitrus oxide (N_2O) and tropospheric ozone in atmosphere

In order to maintain the quality of environment and prevent before it become worst, some affords has been taken out in order to cater this environment issues. Solid waste can be control by several measures such as open dumping, landfill, incinerator, transfer stations and shrinking waste stream. However, this prevention cannot be successful as there are some factors affecting waste generation such as location, seasons, eating habits/lifestyle, etc. Meanwhile, for noise pollution can be control by management during construction phase, planning on construction sites activities, prevention from design stage of machine and additional control after machine is built. Lastly is air pollutants can be dividing into several types which are particulate (PM₁₀), nitrogen oxide (NOx), sulphur oxide (SOx), carbon (COx) and hydrocarbon (HC). Since stationary produces more pollution to atmosphere, it can be cater by using cyclone separator, baghouse filter, electrostatic precipitator and wet scrubber.

In the past few years, the global MODIS (Moderate Resolution Imaging Radiometer) NPP (Net Primary Productivity) has been measured using small scale on-ground flux tower measurements using the eddy covariance method. So far this method is limited to implement due to a number of flux tower worldwide. Until now only about 450 sites flux tower distributed worldwide. Based on previous research by Cohen *et al.*, (2003) and Turner *et al.*, (2005) several issues have arise regarding the appropriateness of the variety of product scale such as to match the low spatial resolution of MODIS satellite data with plot scale flux tower measurements on the ground.

Vargas *et al.*, (2007) and Falgae *et al.*, (2001) have mentioned that although there a lot of flux tower such as AsiaFlux in Asia, KoFlux in Korea, OzFlux in Australia and others seems insufficient for the validation of the global MODIS NPP, thus cannot produced an accurate measurement of global NPP. Besides that, MODIS NPP comes in various models such as initiated by MOD17 (Running *et al.*, 1999), "continuous field model" (Rahman *et al.*, 2004) and "Carnegie-Ames-Stanfor Approach model" (CASA) (Jinguo *et al.*, 2006).

1.2 Problem Statement

Over the past century there has been a dramatic increase in the amount of gases that releases from several sources have contributes air pollution to the environment. So far, however, there has been little discussion about greenhouse effect that increases the earth temperature.

In Malaysia basically, awareness among publics about air pollution are still lacking since not too much campaign and activities that related to this environmental issues. Besides that, poor of monitoring from government agencies have make the quality of gases that releasing are higher than allowable in air quality standard. At construction site especially, most of air quality at this locations are not taken seriously. Enforcement will take place only when there are complains make by local people or it become serious issues. As mention earlier, the global warming is the process whereby the earth's temperature is getting increases. The most primary factor that cause of global warming is carbon dioxide emissions. This significantly occurs due too many sources which producing this gas such as natural activity, power plants, cars, trucks, aircrafts and others sources which not mention here. According to the report, 8 billion tons of CO_2 have been release into atmosphere in year 2008. In records, 40% of all CO_2 emissions are cause by power plants, 33% of all the CO_2 sent forth is the product of cars and trucks and 3.5% are released from aircraft. Therefore, based on this facts it show that CO_2 gases playing major role in increasing temperature which known as global warming.

Therefore, plants play in either sequestering atmospheric carbon or releasing carbon into the atmosphere. This study is conducted to measure carbon in the atmosphere that will absorb by plants. Since Malaysia is located at rain forest region, the amount of CO_2 should be low.

1.3 Aim and Objectives

This study is conducted in order to assess the efficiency of MODIS data using ERDAS software. Therefore, to achieve the aim several objectives are needed as a guideline;

- i. To determine the amount of Net Primary Productivity (NPP) at road construction in Felda Maokil, Segamat.
- ii. To assess the accuracy of MODIS data by validation process with *in*-situ data.
- iii. To assess the correlation of NPP value for years; 2001, 2005 and 2009.

1.4 Scope of the Study

Main focus in this study is involve the use MODIS satellite data at propose location. The implementation for this data is decided because it easy to obtain by downloads from website at http://ladsweb.nascom.nasa.gov. Besides that, MODIS data also is free to get and since the MODIS views the entire surface of the earth every one to two days, the current data is available.

The MODIS satellite will be analyze using ERDAS IMAGE V9.1 from Leica Geosystems Geospatial Imaging. The use of this software because of it is practical to apply and well known product.

Besides that, the propose location for this study is situated at Felda Maokil in Segamat, Johor Darul Takzim. Several points will be allocated in order to measure CO_2 concentration. This parameter is observed by using special equipments like Carbon Dioxide (CO_2) Meter for gaseous concentration.

Then, CO_2 concentration data will be assessing using ERDAS IMAGE V9.1 from Leica Geosystems Geospatial Imaging. An Addition, these values between MODIS satellite data and insitu data will be compare in order to measure the quality of both data.

1.5 Expected Finding

The study would be expected to find that the NPP values are low since the surrounding area was palm oil trees. Besides that, the propose location is less developed which lack gasses released into the atmosphere. Although there are must be some error between MODIS satellite data and insitu data, the differences between both data are in small amounts. The NPP value for MODIS satellite data is more accurate than *in*-situ data. This is because of the influence by surrounding areas such as wind faster, respiration rates by human and animals, activities by local people and others.