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ABSTRACT 
 
 
 
 

Fabrication of perfect laser crystal rod is a very challenging work where 

high shape accuracy and flawless surface are expected. Besides, most improvements 

in the processes or understanding of the physical process involved in fabrication of 

laser crystal rod are closely guarded as proprietary information, and specific details 

can be hardly found in technical journals and other literatures. The main purposes of 

the study are to investigate the potential of rotary ultrasonic machining (RUM) 

process to core drill Neodymium Doped Yttrium Aluminum Garnet (Nd:YAG) laser 

crystal material, and to study the effect of lapping and polishing parameters on the 

surface finish of the machined end faces of Nd:YAG laser rods. The effect of RUM 

machining parameters (spindle speed and feedrate) on surface integrity (surface 

roughness and opaqueness) and defects (ring marks, edge chipping size and chipping 

thickness) are studied. The feasible parameters to obtain the best surface roughness, 

opaqueness, straightness and diameter for Nd:YAG laser rod is 3000 rpm spindle 

speed and 5.4 mm/min, which is at low spindle speed and high feed rate. Nd:YAG 

crystal reaches the saturation point at fine surface finish of 0.124 micron at rotational 

speed of 60 rpm at 11 minutes of lapping time. Whilst for polishing process, 

Nd:YAG laser crystal reaches the saturation point with mirror-like and flawless 

surface finish of 5 nm at 23 minutes of polishing time. It is concluded that the RUM 

process exhibits a great potential method in producing laser crystal rods with better 

controlled machining condition. Meanwhile, LP50 lapping and polishing machine 

and its equipment is adequate to produce very fine surface finish of less than 10 nm 

on hard and brittle materials. 
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ABSTRAK 
 
 
 
 

Fabrikasi rod kristal laser yang sempurna merupakan kerja penuh cabaran 

khususnya mencapai kualiti ketepatan bentuk yang tinggi dengan permukaan tanpa 

kecalaran. Majoriti pemahaman tentang pemprosesan fizikal yang terlibat dalam 

fabrikasi rod kristal laser dikawal ketat oleh pihak pengilang sebagai harta intelek. 

Malahan informasi perinciannya juga terhad dalam jurnal teknikal dan bahan bacaan 

lain. Matlamat utama kajian tersebut adalah untuk mengkaji potensi pemesinan 

rotary ultrasonic (RUM) untuk memesin bahan kristal laser, Neodymium Doped 

Yttrium Aluminum Garnet (Nd:YAG), serta untuk mengkaji kesan parameter 

pemelasan dan penggilapan terhadap kekasaran permukaan rod laser Nd:YAG yang 

dimesinkan. Kesan parameter pemesinan (kelajuan spindal dan kadar uluran) atas 

kekasaran permukaan dan kadar legapannya, serta kecacatan (tanda cincin dan 

sumbing bahagian tepi rod) yang terhasil telah dikajiselidik. Kelajuan spindal 3000 

putaran per minit (ppm) dengan kadar uluran 5.4 mm seminit merupakan kombinasi 

parameter bersesuaian untuk menghasilkan rod laser Nd:YAG yang bertahap legapan 

tinggi, kelurusan rod dan kekasaran permukaan yang memuaskan. Kristal laser 

Nd:YAG mencapai titik tepu pada kekasaran permukaan 0.124 micron setelah 

dipelaskan selama 11minit pada kelajuan pemelasan 60 ppm. Sementara itu, kristal 

laser Nd:YAG menemui titik tepu pada 5 nm setelah digilap 23 minit pada kelajuan 

spindal 40 ppm dengan permukaan selicin cermin tanpa kecalaran. Kesimpulannya, 

RUM menunjukkan potensi yang memberangsangkan dalam penghasilan rod kristal 

laser dengan pengawalan parameter yang optimum. Mesin pemelasan dan 

penggilapan LP50 sesuai diaplikasi untuk penghasilan permukaan halus yang kurang 

dari 10 nm pada bahan berkekerasan dan kerapuhan tinggi. 
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CHAPTER 1 
 
 
 
 

RESEARCH OVERVIEW 
 
 
 
 

1.1 Introduction 
 

Laser, an acronym for light amplification by stimulated emission of radiation, is 

certainly one of the greatest innovations of twentieth century. Its persisted growth and 

development has been an exciting division in the history of science, technology and 

engineering. Laser is distinguished from other electromagnetic radiation mainly in terms 

of its coherence, spectral purity and ability to propagate in a straight line. As a versatile 

source of pure energy in a highly concentrated form, laser has emerged as an attractive 

tool and research instrument with potential for applications in various fields. Figure 1.1 

exemplifies a brief overview to show the diversity of application of laser in different 

fields.  

 

Rapid progress has taken place in the development of solid-state lasers over the 

last five decades since the invention of the first ruby laser in 1960. Solid-state lasers 

exhibit many favorable characteristics such as mechanical durability, and long 

operational lifetime. Solid-state lasers also provide the most versatile radiation source in 

terms of output characteristics when compared to other laser systems such as average and 

peak power, pulse width and repetition rate, and wavelength. These remarkable 

characteristics have put solid-state laser systems among the most preferred candidates for 

a wide range of applications in science and technology, military industry, and domestic 

use. Furthermore, the field of solid-state lasers has found new potential application in 
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conjunction with development of electro-optics for alternative energy resources. Progress 

in crystal growth technology is essential for the development of renewable energy 

sources like laser-fusion energy where large laser and nonlinear-optic crystals of high 

radiation hardness are required. In short, the field of solid-state lasers remains a dynamic 

area and that will continuously advance and broaden into many new areas. Therefore, it is 

essentially for developing nations to explore this arena for better future development. 

 

 
Figure 1.1 Application spectrum of lasers (Steen, 1991) 
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1.2 Research Background 

 

Electro-optics is a branch of technology involving components, devices and 

systems which operate by modification of the optical properties of a material by an 

electric field. It concerns the interaction between the electromagnetic (optical) and the 

electrical (electronic) states of materials. Solid-state lasers are widely used for high 

technology electro-optical and laser applications and have found a number of new 

potential applications. Nowadays hard and brittle oxide materials such as Ruby, 

Alexandrite (BeAl2O4), Yttrium Aluminium Garnet (YAG, Y3Al5O12), Lithium Niobate 

(LiNbO3) and Sapphire (Al2O3) have become important host laser materials.  

 

Hard solids are invariably stiff, high strength and wear resistant. On the other 

hand, hard solids typically exhibit statistically variable brittle fracture and high sensitivity 

to machining damage. When loaded with tensile stresses, hard solids transform from 

elastic to fracture behavior and invariably fail by crack extension. Thus, hard solids are 

usually brittle, i.e., they have small capacity to convert elastic energy into plastic 

deformation at room temperature (Dieter, 1981). Thus, an optimum technology for 

industrial fabrication of specific crystals is required in conjunction with the scientific 

development of crystal growth technology and high demands of various crystals. 

 

In the field of materials processing, the precision machining technologies have 

been developed for the manufacture of cost-effective and quality-assured precision parts 

produced by brittle and hard solids. Examples of machining techniques are diamond 

turning, ion and electron-beam machining, laser-beam machining and abrasive machining 

processes (Snoyes 1986, Nakazawa 1994).  For electro-optic applications, the functional 

devices built with single crystals frequently show monolithic structures with complexes 

shapes that cannot be achieved during the process of crystal growth. Thus, high precision 

machining process is required in order to produce these hard and brittle materials into 

perfect crystal (Anantha Rumu, B.L., et. al, 1989). 
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1.3 Problem Statement 

 

The science and technology combine the state-of-the-art of crystal growth and 

fabrication techniques of these oxide materials, however, have only been circulated in the 

developed nations. In recent years, industrial applications of electro-optical and lasers are 

growing rapidly. Such a high demand of various crystals for today’s wide ranges of 

applications and purposes, and thus it is extremely crucial for industrial-based developing 

nations to gain such knowledge and technology. Therefore to gain such technology it is 

important to gain a paramount understanding the knowledge and have the hands-on 

experience that art and passion of the crystal growth and fabrication techniques. 

 

Neodymium doped yttrium aluminum garnet (Nd:YAG) crystals have been 

widely used as solid-state laser materials due to its attractive combination of its physical, 

chemical,  mechanical, thermal and optical properties. The Nd:YAG lasers have found 

many industrial field applications include material processing in manufacturing fields, 

medical operations in several medical disciplines and in military field.  

 

Many researchers have reported their studies on designations, generations and 

characterizations of various Nd:YAG laser systems and their performances in various 

applications. However, studies related to the machining processes of Nd:YAG were not 

widely reported. Furthermore, laser crystal, for some unknown reasons, had been given 

less attention compared to other hard and brittle materials such as advanced ceramics, 

matrix composites and glasses. 

 

 This study is designated to produce Nd:YAG laser crystal rod by core drilling 

using Rotary Ultrasonic Machining (RUM) and study the influence of machining 

parameter (feedrate and spindle speed) on core drilling performance. Besides, this study 

also intended to produce flat end of Nd:YAG laser rod practicing LP50 Lapping and 

Polishing Machine and investigate the effect of lapping and polishing parameters 

(rotational speed) on surface finish of flat end of Nd:YAG laser rod.  

 



 5

1.4 Objective of Study 

 

 The objectives of the study are as follows: 

 

1. To investigate the feasible machining parameters for core drilling laser 

crystal rod. 

 

2. To evaluate the effect of lapping and polishing table speeds on crystal rod 

end surface finish. 

 

 

1.5 Scope of the Study 

 

The research is confined to the following limits: 

 

1. Fabrication on Nd:YAG and lithium niobate laser crystal ingot including 

the core drilling, lapping and polishing processes. BK7 optical glass was 

used as preliminary study to simulate and establish machining parameters. 

 

2. Core drilling was carried out on CNC Rotary Ultrasonic Machine. The 

machining parameters to be varied were limited to feedrate and spindle 

speed. The interested output parameters are straightness, diameter 

variation, desired lateral surface roughness and opaqueness for laser 

crystal rods.  

 

3. Investigation of feasible machining parameter and time for lapping and 

polishing to obtain excellent mirror-like surface finish on laser crystal rods.  
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4. Lapping and polishing were carried out on LP50 Lapping and Polishing 

Machine. The applied load was fixed during lapping and polishing 

operations. The machined crystal rod end surface finish was interested. 

 

5. The cast iron plate and alumina (Al2O3) abrasive slurry with grit size of 

9μm were used in the lapping operation. The lapping parameter to be 

varied was limited to table speeds, i.e. 40 – 60 revolutions per minute 

(rpm).  

 

6. The stainless steel plate with mounted polyurethane pad and SF1 polishing 

suspension with dissolved alkaline colloidal silica were used in the 

polishing operation. The polishing parameter to be varied was limited to 

table speeds, i.e. 20 – 40 revolutions per minute (rpm).  

 

 

1.6 Significance of the Study 

 

The main emphasize in this study has been given on the great potential of rotary 

ultrasonic machine (RUM) to produce laser rods with desired matt surface by using metal 

impregnated diamond abrasive core drilling tool in conjunction with well controlled 

machining parameters, as well as demonstrates high potential in replacing the 

conventional method for producing Nd:YAG laser rods. In conventional production, large 

Nd:YAG ingot single crystal was first cut into near-net shape, and then continuously 

ground on fine diamond grains to produce Nd:YAG laser rods with desired geometry and 

surface finish. Such method took lengthy processing time and high dependence on well-

trained manpower. Core drilling method is therefore capable to overcome the drawbacks 

of conventional method to produce laser rods within shorter machining time and low 

dependence on manpower, and fulfilling the need to industrialize the fabrication for mass 

productions. Besides, the LP50 lapping and polishing machine shows exciting potentials 
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to produce flawless flat end of Nd:YAG laser rod with excellent mirror-like surface 

finishes. The main idea of the study is as an initiatory step to explore and gain the hands-

on experience for machining the laser materials, and posterior for the possibility of 

commercialization. 

 

 

1.7 Organization of the Thesis 

 

This chapter begins with the background of the research study, followed by the 

problem statement, objective and scope of the study, significance of the study. Chapter 

two includes the background of Nd:YAG crystal and standard specifications for Nd:YAG 

laser rod, overview the principles of ultrasonic core drilling, lapping and polishing 

processes, and critical reviews of machining performance for these processes. Third 

Chapter details out methodology and experimental works. Results and discussions are 

elaborated in the chapter four. Thesis ends with conclusions drawn for this research and 

recommendations for future work. 
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