MECHANICAL, THERMAL AND MORPHOLOGICAL PROPERTIES OF MONTMORILLONITE FILLED LINEAR LOW DENSITY POLYETHYLENE-TOUGHENED POLYLACTIC ACID NANOCOMPOSITES

HARINTHARAVIMAL BALAKRISHNAN

UNIVERSITI TEKNOLOGI MALAYSIA

MECHANICAL, THERMAL AND MORPHOLOGICAL PROPERTIES OF MONTMORILLONITE FILLED LINEAR LOW DENSITY POLYETHYLENE-TOUGHENED POLYLACTIC ACID NANOCOMPOSITES

HARINTHARAVIMAL BALAKRISHNAN

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Polymer)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

JANUARY 2010

'To mankind, may knowledge and wisdom endeavor us with capabilities for our challenging future ahead'

ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Professor Dr. Azman Hassan, for his ever-lasting enthusiasm, encouragement, excellent advice and great concern to my work. A sincere thanks is accorded to my co-supervisor, Assoc. Prof. Dr. Mat Uzir Wahit for his guidance, suggestions, motivation and encouraging advices.

I also wish to express my appreciation to all the lecturers in the Department of Polymer Engineering, the Quality Control staffs in Poly-Star Compounds Sdn. Bhd., Malaysian Institute of Nuclear Technologies (MINT) and Malaysian Rubber Board (LGM) for their help and support in my research. A heartfelt line of appreciation to all the technicians and my labmates of Enhanced Polymers Research Group (EnPRO) for creating a friendly and enjoyable working environment.

Besides, I would like to acknowledge IRPA grant 79162 and the Ministry of Science, Technology and Innovation (MOSTI), Malaysia for generous financial funding and Research Student Grant throughout my studies.

Last but not least, I wish to extend my deep appreciation to my beloved father, Mr. Balakrishnan, my brothers and Shree, who have always encouraged and provided me with moral support in completing this thesis.

ABSTRACT

Linear low density polyethylene (LLDPE) toughened polylactic acid (PLA) nanocomposites containing organophilic modified montmorillonite (MMT) were prepared by melt extrusion using a counter-rotating twin-screw extruder followed by injection molding in order to examine the mechanical, morphological and thermal properties of the nanocomposites. The mechanical properties of PLA/LLDPE nanocomposites were studied through tensile, flexural and impact tests. Scanning electron microscopy (SEM) was used to investigate the phase morphology and LLDPE particle's size in PLA/LLDPE blends and nanocomposites. X-ray diffraction (XRD) was employed to characterize the formation of nanocomposites while the thermal properties were determined using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dynamic mechanical properties were examined via dynamic mechanical analysis (DMA) while moisture permeability properties of the PLA/LLDPE nanocomposites were assessed through water absorption and hygrothermal aging. Subsequently, for PLA/LLPDE blends, the loadings of LLPDE were varied from 5-15 wt% and PLA/LLDPE nanocomposites with 2 phr and 4 phr loadings of MMT were prepared only for the optimum formulation (10 wt% of LLDPE). The results showed that the blending of LLDPE significantly increased the toughness but at the expense of stiffness and strength. Conversely, the incorporation of the MMT increased the stiffness, while the toughness and strength decreased. The PLA/LLDPE nanocomposites containing 2 phr of MMT and 10 wt% of LLDPE had the best balance of stiffness, strength and toughness. The impact strength results also proved that PLA nanocomposites were successfully toughened with LLDPE. XRD established that MMT were well dispersed and preferentially embedded in the PLA phase. SEM revealed that blend ratio and the presence of MMT were found to influence the morphology (e.g. LLDPE particle size and distribution) of the system. Finer particles' size and better distribution of LLDPE has been observed in higher MMT loadings in the system. The SEM micrographs also revealed that increasing content of LLDPE has increased the particle size of LLDPE in PLA. DMA analysis discovered that the storage modulus at 30°C increased with the presence of MMT for PLA nanocomposites. The DSC results showed that the crystallization temperature (T_c) dropped gradually with increasing content of MMT for both PLA and PLA/LLDPE nanocomposites while the glass transition (T_g) and melting temperature (T_m) remained unchanged. TGA also exhibited an increase in T_{10%} decomposition temperature for PLA and PLA/LLDPE nanocomposites. Water absorption curves obeyed the Fick's law with rapid moisture absorption to maximum saturation level (M_m) and the value of M_m of PLA increased with addition of LLDPE and 2 phr of MMT. Hygrothermal aging revealed that the M_m increased significantly at elevated temperatures (60°C and 90°C) and addition of LLDPE and MMT improved the hygrothermal stability of PLA.

ABSTRAK

Nanokomposit asid polilaktik (PLA) yang mengandungi montmorillonite (MMT) diubahsuai secara organofilik, diliat dengan polietilena berantai lurus yang berketumpatan rendah (LLDPE), telah disediakan melalui penyemperitan leburan menggunakan penyemperit skru berkembar berlawanan arah diikuti proses acuan suntikan untuk mengkaji sifat mekanikal, morfologi dan terma nanokomposit tersebut. Sifat mekanikal nanokomposit PLA/LLDPE dikaji berdasarkan ujian tegangan, lenturan dan hentaman. Mikroskop Imbasan Elektron (SEM) digunakan untuk mengkaji morfologi dan saiz partikel LLDPE dalam adunan PLA/LLDPE dan nanokompositnya. Pembelauan sinar-X (XRD) digunakan untuk pencirian pembentukan nanokomposit sementara sifat termal ditentukan dengan menggunakan analisis termogravimetrik (TGA) dan kalorimeter pembezaan imbasan (DSC). Sifat dinamik diperiksa dengan menggunakan penganalisis terma dinamik (DMA) sementara sifat kebolehtelapan lembapan nanokomposit PLA/LLDPE dikaji melalui penyerapan air dan penuaan higroterma. Seterusnya, untuk adunan PLA/LLDPE, kandungan LLDPE diubah dari 5 hingga 15 wt% dan nanokomposit PLA/LLDPE dengan kandungan MMT 2 phr dan 4 phr disediakan hanya untuk formulasi yang optimum (10 wt% LLDPE). Keputusan menunjukkan adunan LLDPE jelas meningkatkan keliatan tetapi menyebabkan penurunan kekakuan dan kekuatan bahan. Sebaliknya campuran dengan MMT meningkatkan kekakuan namun keliatan dan kekuatan menurun. Nanokomposit PLA/LLDPE yang mengandungi 2 phr MMT dan 10 wt% LLDPE adalah formulasi yang terbaik dengan keseimbangan kekakuan, kekuatan dan keliatan. Keputusan kekuatan hentaman membuktikan bahawa nanokomposit PLA berjaya diliatkan dengan LLDPE. XRD menunjukkan MMT diselerakkan dengan baik dan berada di dalam matrik PLA. SEM mendedahkan nisbah adunan dan kehadiran MMT didapati mempengaruhi morfologi sistem (saiz partikel dan keserakan LLDPE). Partikel saiz LLDPE yang kecil dan keserakan yang baik dapat dilihat dengan kandungan MMT yang banyak. Mikrograf SEM juga mendedahkan peningkatan kandungan LLDPE telah meningkatkan saiz partikel LLDPE dalam PLA. Analisis DMA mendapati bahawa modulus simpanan pada 30 °C meningkat dengan kehadiran MMT dalam nanokomposit PLA. Keputusan DSC menunjukkan suhu penghabluran (T_c) turun beransur-ansur dengan peningkatan kandungan MMT dalam kedua-dua PLA dan nanokomposit PLA/LLDPE, sementara suhu peralihan kaca (Tg) dan takat lebur (Tm) kekal tidak berubah. TGA juga menunjukkan suhu penguraian $T_{10\%}$ meningkat untuk PLA dan nanokomposit PLA/LLLDPE. Lengkungan penyerapan air mematuhi hukum Fick dengan penyerapan lembapan pantas ke tahap ketepuan maksimum (M_m) dan nilai M_m untuk PLA meningkat dengan penambahan LLDPE dan MMT. Penuaan higroterma menunjukkan bahawa M_m meningkat pada suhu (60°C dan 90°C) dan penambahan LLDPE dan MMT meningkatkan kestabilan higroterma PLA.

TABLE OF CONTENT

CHAPTER		TITLE	PAGE
	TIT	LE	i
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	KNOWLEDGEMENTS	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	TAB	BLE OF CONTENTS	vii
	LIST	Г OF TABLES	xi
	LIST	Г OF FIGURES	xii
	LIST	Γ OF ABBREVIATIONS AND SYMBOLS	XV
	LIST	Γ OF APPENDICES	xvii
1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Objectives of the study	4
	1.3	Scope of Research	5
	1.4	Importance of Research	6
2	LIT	ERATURE REVIEW	7
	2.1	Biopolymers	7
	2.2	Polylactic acid (PLA)	7
	2.3	Plasticized PLA	12

2.4	Nanoc	composites	13
2.5	Montr	norillonite (MMT)	14
	2.5.1 N	Morphology and Structure	15
	2.5.2 (Clay characteristics	16
	2.5.3 (Clay Surface Modification	17
	2.5.4 0	Clay Distribution	18
2.6	Nanoc	composites preparation methods	19
2.7	Polyla	actic acid nanocomposites	23
2.8	Plastic	cized polylactic acid nanocomposite	30
2.9	Tough	nened polymers	32
2.10	Tough	nened polylactic acid	34
2.11	Tough	nened polylactic acid nanocomposites	36
2.12	Charae	cterization of Nanocomposites	37
	2.12.1	X-Ray Diffraction (XRD)	37
	2.12.2	Transmission Electron Microscopy (TEM)	38
2.13	Water	absorption	41
	2.13.1	Mechanism of moisture penetration	41
	2.13.2	Diffusion	41
2.14	Hygro	thermal aging	43
	2.14.1	Degradation and Hydrolysis	44
MAT	ERIAL	S AND METHODS	47
3.1	Mater	ials	47
	3.1.1	Thermoplastics	47
	3.1.2	Montmorillonite (MMT)	48
	3.1.3	Composition and Designation of Materials	48
3.2	Sampl	e Preparation	49
	3.2.1	Premixing	49
	3.2.2	Extrusion	49

3

3.2.3 Injection Moulding 50

viii

3.3	Mater	ials Properties Characterization	50
	3.3.1	Mechanical Testing	50
		3.3.1.1 Tensile	50
		3.3.1.2 Flexural	50
		3.3.1.3 Notched Izod Impact	51
	3.3.2	Morphological Study	51
		3.3.2.1 X-ray Diffraction (XRD)	51
		3.3.2.2 Scanning Electron Microscopy (SEM)	51
		3.3.2.3 Transmission Electron Microscopy (TEM)	52
	3.3.3	Thermal Analysis	52
		3.3.3.1 Dynamic Mechanical Analysis (DMA)	53
		3.3.3.2 Differential Scanning Calorimetry (DSC)	53
		3.3.3.3 Thermogravimetry Analysis (TGA)	53
	3.3.4	Water Absorption	54
	3.3.5	Hygothermal aging	55
RES	ULTS A	ND DISCUSSION	56
4.1	Effect	of LLDPE contents on PLA/LLDPE blends	56
	4.1.1	Mechanical Properties	56
		4.1.1.1 Izod Impact Properties	56
		4.1.1.2 Tensile properties	58
		4.1.1.3 Elongation at break	60
		4.1.1.4 Flexural properties	61
		4.1.1.5 Overall mechanical properties	62
	4.1.2	Morphology studies (Scanning electron microscopy)	64
	4.1.3	Thermal properties	67
		4.1.3.1 Differential scanning calorimetry (DSC)	67
		4.1.3.2 Thermogravimetric analysis (TGA)	68

4

	4.2	Effect of MMT on PLA/MMT and PLA/LLDPE/MMT	
		nanocomposites	71
		4.2.1 Mechanical properties	71
		4.2.1.1 Overall mechanical properties	76
		4.2.2 Morphological properties	77
		4.2.2.1 X-Ray Diffraction (XRD)	77
		4.2.2.2 Transmission electron microscope (TEM)	82
		4.2.2.3 Scanning Electron Microscopy (SEM)	87
		4.2.3 Thermal properties	90
		4.2.3.1 Differential scanning calorimetry (DSC)	90
		4.2.3.2 Thermogravimetry analysis (TGA)	92
		4.2.3.3 Dynamic mechanical analysis (DMA)	96
	4.3	Water absorption	102
		4.3.1 Kinetics of water absorption	102
	4.4	Hygrothermal aging	105
5	CON	NCLUSION AND RECOMMENDATIONS	112
	5.1	Conclusion	112
	5.2	Recommendations for future works	114
RE	FEREN	CES	116
Арр	endices	A-E	125

LIST OF TABLES

TABLE NO.TITLE

PAGE

2.1	Mechanical properties of PLA (Material datasheet by Biomer for L9000)	10
3.1	Blend composition of PLA/LLDPE	48
3.2	Blend composition of PLA with different MMT loadings	48
3.3	Blend composition of PLA/LLDPE (90/10) with different content of MMT	59
4.1	Thermal characteristics of PLA and PLA/LLDPE blends	68
4.2	TGA results of PLA and PLA/LLDPE blends	70
4.3	The 2θ angle and <i>d</i> -spacing of MMT for PLA/MMT and	
	PLA/LLDPE/MMT nanocomposites	79
4.4	DSC results for PLA/MMT and PLA/LLDPE/MMT nanocomposites	92
4.5	TGA results for PLA/MMT and PLA/LLDPE/MMT nanocomposites	96
4.6	Equilibrium water content, M_m and diffusivity, D of	
	PLA/MMT and PLA/LLDPE/MMT nanocomposites	103
4.7	Effect of immersion temperature on equilibrium moisture content	
	(M_m) of PLA/MMT and PLA/LLDPE/MMT nanocomposites	107
4.8	Calculated weight loss of PLA in percentage (%) in	
	PLA/MMT and PLA/LLDPE/MMT nanocomposites at 30 days	111

LIST OF FIGURES

FIGU	FIGURE NO. TITLE	
2.1	Lifecycle of polylactic acid (PLA)	9
2.2	Mechanical properties of PLA and other commodity plastics:	
	(a) Young's Modulus (b) Tensile strength (c) Elongation at break	11
2.3	Structure of 2:1 phyllosilicates (Ray and Okomoto 2003)	15
2.4	Surface modification of montmorilonite (Lim, 2006)	18
2.5	Three possible structures of polymer-layered silicate composites	19
2.6	Schematic representation of polymer nanocomposite obtained	
	by in-situ polymerization	20
2.7	Schematic representation of polymer-layered silicate nanocomposite	
	obtained by intercalation of polymer from solution	21
2.8	Schematic representation of polymer-layered silicate	
	nanocomposite obtained direct melt intercalation	22
2.9	Typical XRD patterns for organically modified layered	
	silicates (OMLS) and various types of nanocomposites	39
2.10	TEM images of three different types of nanocomposites	40
2.11	Reaction pathway of hydrolysis in PLA	45
4.1	Effect of LLDPE content on the Izod Impact strength of	
	PLA/LLDPE blends	57
4.2	Effect of LLDPE content on the Young's modulus and	
	tensile strength of PLA/LLDPE blends	59
4.3	Typical stress-strain curves for PLA/LLDPE blends	59
4.4	Effect of LLDPE content on Elongation of break of PLA/LLDPE blends	60
4.5	Effect of LLDPE content on flexural strength and modulus	
	of PLA/LLDPE blends	62

4.6	Determination of balance properties based on flexural modulus	
	and impact strength of PLA/LLDPE blends	63
4.7	Representative SEM images of impact fractured surfaces:	
	(a) PLA, (b) P95/L5, (c) P90/L10, (d) P85/L15	66
4.8	Correlation between impact strength and LLDPE particles size	66
4.9	Thermogravimetric analysis of PLA and PLA/LLDPE with	
	different LLDPE contents	70
4.10	The effect of MMT content on Young's modulus and	
	tensile strength of PLA/MMT and PLA/LLDPE/MMT nanocomposites	73
4.11	The effect of MMT content on the flexural modulus and flexural	
	strength of PLA/MMT and PLA/LLDPE/MMT nanocomposites	74
4.12	The effect of MMT content on the impact strength and elongation	
	at break of PLA/MMT and PLA/LLDPE/MMT nanocomposites	76
4.13	Determination of balanced properties based on flexural modulus and	
	impact strength of PLA/MMT and PLA/LLDPE/MMT nanocomposites	77
4.14	XRD of (a) neat PLA, (b) PLA/M2, (c) PLA/M4 and (d) neat MMT	79
4.15	XRD of (a) PLA/LLDPE, (b) PLA/LLDPE/M2, (c) PLA/LLDPE/M4	
	and (d) neat MMT	80
4.16	XRD of (a) neat PLA, (b) PLA/M2, (c) PLA/M4,	
	(d) PLA/LLDPE, (e) PLA/LLDPE/M2, (f) PLA/LLDPE/M4	82
4.17	TEM micrographs of PLA and PLA/MMT nanocomposites	84
4.18	TEM micrographs of PLA/LLDPE and PLA/LLDPE/MMT	
	nanocomposites	86
4.19	Representative SEM images of Izod impact fractured surfaces:	
	(a) PLA/LLDPE, (b) PLA/LLDPE/M2, (c) PLA/LLDPE/M4	89
4.20	TGA curves of PLA and PLA/MMT nanocomposites	93
4.21	TGA curves for PLA/LLDPE and PLA/LLDPE/MMT nanocomposites	94
4.22	Storage modulus of PLA and PLA/MMT nanocomposites	98
4.23	Storage modulus of PLA/LLDPE and PLA/LLDPE/MMT nanocomposites	100
4.24	Loss modulus of PLA and PLA/MMT nanocomposites	101
4.25	Loss modulus of PLA/LLDPE and PLA/LLDPE/MMT nanocomposites	102

xiii

4.26	Water absorption curves of PLA/MMT and PLA/LLDPE/MMT	
	nanocomposites	105
4.27	Water absorption curves for PLA/MMT and PLA/LLDPE/MMT	
	nanocomposites at 60°C	106
4.28	Hygrothermal aging of PLA/MMT and PLA/LLDPE/MMT	
	nanocomposites at 60°C	107
4.29	Hygrothermal aging of PLA/MMT and PLA/LLDPE/MMT	
	nanocomposites at 90°C	109

LIST OF ABBREVIATIONS AND SYMBOLS

ASTM	American Society for Testing and Materials
CEC	Cation Exchange Capacity
D	Diffusivity
DMA	Dynamic Mechanical Analysis
DSC	Differential Scanning Calorimeter
d	Spacing between diffractional lattice plane (interspacing)
E'	Storage Modulus
<i>E</i> "	Loss Modulus
ENR	Epoxidized Natural Rubber
HDPE	High Density Polyethylene
Hz	Hertz
LDPE	Low Density Polyethylene
LLDPE	Linear Low Density Polyethylene
MFR	Melt flow rate
MMT	Montmorillonite
M_{m}	Moisture absorption at maximum
M_t	Percentage weight at time, t
NBR	Acrylonitrile butadiene rubber
NR	Natural rubber
PA	Polyamide
PA6	Polyamide 6
PE	Polyethylene
PEG	Polyethylene glycol
PET	Polyethyelene terephtalate
PLA	Polylactic acid
PS	Polystyrene

PVC	Polyvinyl chloride
SBR	Styrene butadiene rubber
SEM	Scanning electron microscopy
tan δ	Tangent delta
TEM	Transmission electron microscopy
T_g	Glass transition temperature
T_m	Melting temperature
T_c	Crystallization temperature
TGA	Thermogravimetric analysis
W_d	Weight of dry sample
W_w	Weight of samples after exposure to distilled water
XRD	X-ray diffraction
X_c	Degree of crystallinity
θ	Diffraction angle
λ	Wave length
ΔH_m	Heat of fusion for sample
ΔH_m ideal	Heat of fusion for 100% crystalline

LIST OF APPENDICES

APPENDIX TITLE		PAGI	
A.	Paper 1 (Abstract) Journal of Elastomers and Plastics	126	
B.	Paper 2 (Abstract) Materials and Design	127	
C.	Paper 3 (Abstract)	128	
D.	Conference proceeding (RAFSS 2008), Malaysia.	129	
E.	Conference Proceeding (NSPM 2008), Malaysia.	130	

CHAPTER 1

INTRODUCTION

1.1 Background

Biopolymers have been studied extensively due to environmentally aware consumers, increased price of crude oil and global warming. These polymers are derived from naturally occurring polymers that are found in all living organisms. Biopolymers which sourced from renewable resources will reduce our dependence on petroleum (Peterson and Oksman, 2006). Today, biopolymers are used in a variety of applications such as therapeutic aids, medicines, coatings, food product and packaging materials.

Polylactic acid (PLA) has caught the attention of polymer scientist recently as a potential biopolymer to substitute the conventional petroleum based plastics. Apart from being in the category of biodegradable polymer, PLA has wide applications in biomedical field due to its biocompatibility characteristics. Recent studies on PLA had concluded that the biopolymer has good mechanical properties, thermal plasticity and biocompatibility, and is readily fabricated, thus being a promising polymer for various end-use applications (Ray *et al.*, 2003). However, PLA, similar to polystyrene, is a

comparatively brittle and stiff polymer with low deformation at break and low impact strength (Jacobsen and Fritz, 1999).

One main task will be to modify these properties in such a way that PLA is able to compete with other more flexible commodity polymers such as polyethylene (PE), polypropylene (PP), polyethylene terepthalate (PET) or polyvinyl chloride (PVC). Previous researchers (Jacobsen and Fritz, 1999; Baiardo *et al.*, 2003; Kulinski and Piorkowska, 2005) had used plasticizers to enhance PLA's elongation at break and reduce its brittleness. Jacobsen *et al.* (1999) had studied the introduction of plasticizers such as polyethylene glycol (PEG), glucosemonoesters and partial fatty acid esters into PLA. They showed that the impact strength of PLA had increased significantly from 31 to 80 J/m with the addition of 10% PEG, leading to a toughened PLA.

The recent achievements in nanocomposite technology has fueled the need for new knowledge and findings resulting development of respective polymer nanocomposites; polyamide (Kelnar *et al.*, 2005), polypropylene (Lim *et al.*, 2006), polycaprolactone (Lepoittevin *et al.*, 2002), polystyrene (Fu and Qutubuddin, 2000) and others. In recent years, the field of PLA nanocomposites (Ray *et al.*, 2003; Lee *et al.*, 2003; Petersson and Oksman, 2006) based on layered silicates, such as MMT, has steadily increasing interest from scientist and industrialist. The nanoscale distribution of such high aspect ratio fillers brings up some large improvements to the polymer matrix in terms of mechanical, fire retardant, rheological, gas barrier and optical properties, especially at low clay content (as small as 1wt%) in comparison with conventional microcomposites (>30 wt% of microfiller). In order to reach this nanoscale distribution, the naturally hydrophilic clay filler has to be organically modified to be compatible with the organic polymer matrix.

Interestingly, the distribution of nanoclay is proven to be well dispersed in PLA without introduction of compatibilizing agents due to the interaction of hydrogen bonding between ammonium group in the organic "surfactant" of the MMT with the

carbonyl group of PLA chain segments contributes to this process (Pluta, 2006). There are also strong interactions between the PLA hydroxyl end groups and the MMT platelet surfaces or the ammonium group of the ammonium surfactant in the organically modified MMT reported in previous studies (Jiang *et al.*, 2007). Regardless of the improvements achieved in the development of PLA nanocomposites, the polymer's brittleness had become more inherent. This had limited its applications.

Similar brittleness problems had been solved before by researches with the approach of introduction of tough materials into a brittle nanocomposite system. Ahn et al. (2006) had examined the rubber toughening of nylon 6 nanocomposites in terms of impact strength, ductile-brittle transition temperature, and tensile properties. Lim et al. (2006)had successfully developed the poly(ethylene-co-octene) toughened polypropylene nanocomposites and studied its morphology, thermal and mechanical behaviour. Only several studies had been conducted recently in the development of plasticized PLA nanocomposites (Pluta, 2004; Paul et al., 2003; Thellen et al., 2005) but the mechanical properties of these nanocomposites were not studied in detail. Thellen et al. (2005) had investigated the influence of MMT layered silicate on plasticized PLA blown films and concluded that the plasticized PLA/MMT nanocomposites did not see highly significant enhancements with addition of MMT but the toughness is at least maintained in the nanocomposites unlike other filled polymeric systems. They found that the plasticization effect reduced the brittleness of the nanocomposites and the breakthrough will widen PLA's applications.

Although the addition of plasticizers such as PEG will overcome the brittleness, it comes with a sacrifice of stiffness of the material which is also important for structural applications (Baiardo *et al.*, 2003). Jacobsen *et al.* (1999) had proved that the addition of a plasticizer (PEG) leads to a decrease of the elasticity modulus and the addition of 2.5 wt% already lowers the modulus by 10% to 15% and this result was nearly independently of the type of plasticizer used. Thus, a new toughener was needed to overcome the brittleness nevertheless significantly reducing the stiffness. The introduction of LLDPE as a toughener for PLA indeed showed a remarkable

enhancement in terms of toughness of the material. The results showed a significant improvement in impact strength with considerable reduction in tensile and flexural strength and modulus. It was also concluded that the partial miscibility of LLDPE in PLA enabled it to perform as an impact modifier for PLA (Anderson *et al.*, 2003). Although it seems that the use of LLDPE as an impact modifier for PLA may defeat the purpose of developing a 'green' polymer, it shall be noted that the main aim of this research is for utilization of PLA in structural applications such as furniture and automobile parts.

1.2 Objectives of the study

One of the most important aspects of materials development in thermoplastics engineering is to achieve a good combination of mechanical properties and processability at a moderate cost. As far as mechanical properties are concerned, the main target is to strike a balance of stiffness, strength and toughness. To the best of our knowledge, no study on LLDPE toughened PLA nanocomposites have been reported yet. Thus, the aim of the research is to develop an environmentally friendly polymer nanocomposite with enhanced toughness namely LLDPE-toughened PLA/MMT nanocomposite.

The main objective can further be divided into:

- To explore the effect of LLDPE contents on the mechanical, thermal and morphological properties of PLA/LLDPE blends.
- To investigate the effect of MMT concentration on the mechanical, thermal and morphological properties of PLA/MMT and PLA/LLDPE/MMT nanocomposites.

• To evaluate the water absorption behavior and hygrothermal aging of PLA/MMT and PLA/LLDPE/MMT nanocomposites.

1.3 Scope of Research

In order to achieve the objectives of the research the following activities were carried out:

1. Sample preparation

In this research project, sample preparation and blending was performed via melt intercalation method. This involves:

- i) Blending of LLDPE with PLA to produce PLA/LLDPE blends with twin screw extruder.
- ii) Blending of MMT with PLA to produce PLA/MMT nanocomposites with twin screw extruder.
- iii) Blending of LLDPE and MMT with PLA to produce PLA/LLDPE/MMT nanocomposites with twin screw extruder.
- iv) The blends and nanocomposites fabricated into test specimens via injection molding for analysis.
- 2. Physical and mechanical analysis
 - (i) Water absorption
 - (ii) Hygrothermal aging
 - (iii)Tensile test
 - (iv)Flexural test
 - (v) Izod impact test

- 3. Characterization and morphological study
 - (i) X-ray Diffraction (XRD)
 - (ii) Scanning electron microscopy (SEM)
 - (iii) Transmission electron microscopy (TEM)
- 4. Thermal properties analysis
 - (i) Differential scanning calorimeter (DSC)
 - (ii) Themogravimetric analysis (TGA)
 - (iii) Dynamic mechanical analysis (DMA)

1.4 Importance of Research

The research expects to develop a toughened nanocomposite from a renewable resource with balanced mechanical properties. The success of this project will widen the applications of PLA such as furniture, automobile parts and enables it to be considered as a possible substitute for conventional petroleum based plastics.