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ABSTRACT 

Linear low density polyethylene (LLDPE) toughened polylactic acid (PLA) 

nanocomposites containing organophilic modified montmorillonite (MMT) were 

prepared by melt extrusion using a counter-rotating twin-screw extruder followed by 

injection molding in order to examine the mechanical, morphological and thermal 

properties of the nanocomposites. The mechanical properties of PLA/LLDPE 

nanocomposites were studied through tensile, flexural and impact tests. Scanning 

electron microscopy (SEM) was used to investigate the phase morphology and LLDPE 

particle’s size in PLA/LLDPE blends and nanocomposites. X-ray diffraction (XRD) was 

employed to characterize the formation of nanocomposites while the thermal properties 

were determined using thermogravimetric analysis (TGA) and differential scanning 

calorimetry (DSC). The dynamic mechanical properties were examined via dynamic 

mechanical analysis (DMA) while moisture permeability properties of the PLA/LLDPE 

nanocomposites were assessed through water absorption and hygrothermal aging. 

Subsequently, for PLA/LLPDE blends, the loadings of LLPDE were varied from 5-15 

wt% and PLA/LLDPE nanocomposites with 2 phr and 4 phr loadings of MMT were 

prepared only for the optimum formulation (10 wt% of LLDPE). The results showed 

that the blending of LLDPE significantly increased the toughness but at the expense of 

stiffness and strength. Conversely, the incorporation of the MMT increased the stiffness, 

while the toughness and strength decreased. The PLA/LLDPE nanocomposites 

containing 2 phr of MMT and 10 wt% of LLDPE had the best balance of stiffness, 

strength and toughness. The impact strength results also proved that PLA 

nanocomposites were successfully toughened with LLDPE. XRD established that MMT 

were well dispersed and preferentially embedded in the PLA phase. SEM revealed that 

blend ratio and the presence of MMT were found to influence the morphology (e.g. 

LLDPE particle size and distribution) of the system. Finer particles’ size and better 

distribution of LLDPE has been observed in higher MMT loadings in the system. The 

SEM micrographs also revealed that increasing content of LLDPE has increased the 

particle size of LLDPE in PLA. DMA analysis discovered that the storage modulus at 

30ºC increased with the presence of MMT for PLA nanocomposites. The DSC results 

showed that the crystallization temperature (Tc) dropped gradually with increasing 

content of MMT for both PLA and PLA/LLDPE nanocomposites while the glass 

transition (Tg) and melting temperature (Tm) remained unchanged. TGA also exhibited 

an increase in T10% decomposition temperature for PLA and PLA/LLDPE 

nanocomposites. Water absorption curves obeyed the Fick’s law with rapid moisture 

absorption to maximum saturation level (Mm) and the value of Mm of PLA increased 

with addition of LLDPE and 2 phr of MMT. Hygrothermal aging revealed that the Mm

increased significantly at elevated temperatures (60ºC and 90ºC) and addition of LLDPE 

and MMT improved the hygrothermal stability of PLA. 
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ABSTRAK 

Nanokomposit asid polilaktik (PLA) yang mengandungi montmorillonite (MMT) 

yang diubahsuai secara organofilik, diliat dengan polietilena berantai lurus 

berketumpatan rendah (LLDPE), telah disediakan melalui penyemperitan leburan 

menggunakan penyemperit skru berkembar berlawanan arah diikuti proses acuan 

suntikan untuk mengkaji sifat mekanikal, morfologi dan terma nanokomposit tersebut. 

Sifat mekanikal nanokomposit PLA/LLDPE dikaji berdasarkan ujian tegangan, lenturan 

dan hentaman. Mikroskop Imbasan Elektron (SEM) digunakan untuk mengkaji 

morfologi dan saiz partikel LLDPE dalam adunan PLA/LLDPE dan nanokompositnya. 

Pembelauan sinar-X (XRD) digunakan untuk pencirian pembentukan nanokomposit 

sementara sifat termal ditentukan dengan menggunakan analisis termogravimetrik 

(TGA) dan kalorimeter pembezaan imbasan (DSC). Sifat dinamik diperiksa dengan 

menggunakan penganalisis terma dinamik (DMA) sementara sifat kebolehtelapan 

lembapan nanokomposit PLA/LLDPE dikaji melalui penyerapan air dan penuaan 

higroterma. Seterusnya, untuk adunan PLA/LLDPE, kandungan LLDPE diubah dari 5 

hingga 15 wt% dan nanokomposit PLA/LLDPE  dengan kandungan MMT  2 phr  dan 4 

phr disediakan hanya untuk formulasi yang optimum (10 wt% LLDPE).  Keputusan 

menunjukkan adunan LLDPE jelas meningkatkan keliatan tetapi menyebabkan 

penurunan kekakuan dan kekuatan bahan. Sebaliknya campuran dengan MMT 

meningkatkan kekakuan namun keliatan dan kekuatan menurun. Nanokomposit 

PLA/LLDPE yang mengandungi 2 phr MMT dan 10 wt% LLDPE adalah formulasi 

yang terbaik dengan keseimbangan kekakuan, kekuatan dan keliatan. Keputusan 

kekuatan hentaman membuktikan bahawa nanokomposit PLA berjaya diliatkan dengan 

LLDPE. XRD menunjukkan MMT diselerakkan dengan baik dan berada di dalam 

matrik PLA. SEM mendedahkan nisbah adunan dan kehadiran MMT didapati 

mempengaruhi morfologi sistem (saiz partikel dan keserakan LLDPE). Partikel saiz 

LLDPE yang kecil dan keserakan yang baik dapat dilihat dengan kandungan MMT yang 

banyak. Mikrograf SEM juga mendedahkan peningkatan kandungan LLDPE  telah 

meningkatkan saiz partikel LLDPE dalam PLA. Analisis DMA mendapati bahawa 

modulus simpanan pada 30 �C meningkat dengan kehadiran MMT dalam nanokomposit 

PLA. Keputusan DSC menunjukkan suhu penghabluran (Tc) turun beransur-ansur 

dengan peningkatan kandungan MMT dalam kedua-dua PLA dan nanokomposit 

PLA/LLDPE, sementara suhu peralihan kaca (Tg) dan takat lebur (Tm) kekal tidak 

berubah. TGA juga menunjukkan suhu penguraian T10% meningkat untuk PLA dan 

nanokomposit PLA/LLLDPE. Lengkungan penyerapan air mematuhi hukum Fick 

dengan penyerapan lembapan pantas ke tahap ketepuan maksimum (Mm) dan nilai Mm

untuk PLA meningkat dengan penambahan LLDPE dan MMT. Penuaan higroterma 

menunjukkan bahawa Mm meningkat pada suhu (60�C dan 90�C) dan penambahan 

LLDPE dan MMT meningkatkan kestabilan higroterma PLA. 
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CHAPTER 1 

INTRODUCTION

1.1 Background

�
�

Biopolymers have been studied extensively due to environmentally aware 

consumers, increased price of crude oil and global warming. These polymers are derived 

from naturally occurring polymers that are found in all living organisms. Biopolymers 

which sourced from renewable resources will reduce our dependence on petroleum 

(Peterson and Oksman, 2006). Today, biopolymers are used in a variety of applications 

such as therapeutic aids, medicines, coatings, food product and packaging materials. 

Polylactic acid (PLA) has caught the attention of polymer scientist recently as a 

potential biopolymer to substitute the conventional petroleum based plastics. Apart from 

being in the category of biodegradable polymer, PLA has wide applications in 

biomedical field due to its biocompatibility characteristics. Recent studies on PLA had 

concluded that the biopolymer has good mechanical properties, thermal plasticity and 

biocompatibility, and is readily fabricated, thus being a promising polymer for various 

end-use applications (Ray et al., 2003). However, PLA, similar to polystyrene, is a 
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comparatively brittle and stiff polymer with low deformation at break and low impact 

strength (Jacobsen and Fritz, 1999).

One main task will be to modify these properties in such a way that PLA is able 

to compete with other more flexible commodity polymers such as polyethylene (PE), 

polypropylene (PP), polyethylene terepthalate (PET) or polyvinyl chloride (PVC). 

Previous researchers (Jacobsen and Fritz, 1999; Baiardo et al., 2003; Kulinski and 

Piorkowska, 2005) had used plasticizers to enhance PLA’s elongation at break and 

reduce its brittleness. Jacobsen et al. (1999) had studied the introduction of plasticizers 

such as polyethylene glycol (PEG), glucosemonoesters and partial fatty acid esters into 

PLA. They showed that the impact strength of PLA had increased significantly from 31 

to 80 J/m with the addition of 10% PEG, leading to a toughened PLA.  

The recent achievements in nanocomposite technology has fueled the need for 

new knowledge and findings resulting development of respective polymer 

nanocomposites; polyamide (Kelnar et al., 2005), polypropylene (Lim et al., 2006), 

polycaprolactone (Lepoittevin et al., 2002), polystyrene (Fu and Qutubuddin, 2000) and 

others. In recent years, the field of PLA nanocomposites (Ray et al., 2003; Lee et al.,

2003; Petersson and Oksman, 2006) based on layered silicates, such as MMT, has 

steadily increasing interest from scientist and industrialist. The nanoscale distribution of 

such high aspect ratio fillers brings up some large improvements to the polymer matrix 

in terms of mechanical, fire retardant, rheological, gas barrier and optical properties, 

especially at low clay content (as small as 1wt%) in comparison with conventional 

microcomposites (>30 wt% of microfiller). In order to reach this nanoscale distribution, 

the naturally hydrophilic clay filler has to be organically modified to be compatible with 

the organic polymer matrix.  

Interestingly, the distribution of nanoclay is proven to be well dispersed in PLA 

without introduction of compatibilizing agents due to the interaction of hydrogen 

bonding between ammonium group in the organic “surfactant” of the MMT with the 
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carbonyl group of PLA chain segments contributes to this process (Pluta, 2006). There 

are also strong interactions between the PLA hydroxyl end groups and the MMT platelet 

surfaces or the ammonium group of the ammonium surfactant in the organically 

modified MMT reported in previous studies (Jiang et al., 2007). Regardless of the 

improvements achieved in the development of PLA nanocomposites, the polymer’s 

brittleness had become more inherent. This had limited its applications. 

Similar brittleness problems had been solved before by researches with the 

approach of introduction of tough materials into a brittle nanocomposite system. Ahn et 

al. (2006) had examined the rubber toughening of nylon 6 nanocomposites in terms of 

impact strength, ductile–brittle transition temperature, and tensile properties. Lim et al.

(2006) had successfully developed the poly(ethylene-co-octene) toughened 

polypropylene nanocomposites and studied its morphology, thermal and mechanical 

behaviour. Only several studies had been conducted recently in the development of 

plasticized PLA nanocomposites (Pluta, 2004; Paul et al., 2003; Thellen et al., 2005) but 

the mechanical properties of these nanocomposites were not studied in detail. Thellen et

al. (2005) had investigated the influence of MMT layered silicate on plasticized PLA 

blown films and concluded that the plasticized PLA/MMT nanocomposites did not see 

highly significant enhancements with addition of MMT but the toughness is at least 

maintained in the nanocomposites unlike other filled polymeric systems. They found 

that the plasticization effect reduced the brittleness of the nanocomposites and the 

breakthrough will widen PLA’s applications. 

Although the addition of plasticizers such as PEG will overcome the brittleness, 

it comes with a sacrifice of stiffness of the material which is also important for structural 

applications (Baiardo et al., 2003). Jacobsen et al. (1999) had proved that the addition of 

a plasticizer (PEG) leads to a decrease of the elasticity modulus and the addition of 2.5 

wt% already lowers the modulus by 10% to 15% and this result was nearly 

independently of the type of plasticizer used. Thus, a new toughener was needed to 

overcome the brittleness nevertheless significantly reducing the stiffness. The 

introduction of LLDPE as a toughener for PLA indeed showed a remarkable 
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enhancement in terms of toughness of the material. The results showed a significant 

improvement in impact strength with considerable reduction in tensile and flexural 

strength and modulus. It was also concluded that the partial miscibility of LLDPE in 

PLA enabled it to perform as an impact modifier for PLA (Anderson et al., 2003). 

Although it seems that the use of LLDPE as an impact modifier for PLA may defeat the 

purpose of developing a ‘green’ polymer, it shall be noted that the main aim of this 

research is for utilization of PLA in structural applications such as furniture and 

automobile parts. 

1.2  Objectives of the study 

One of the most important aspects of materials development in thermoplastics 

engineering is to achieve a good combination of mechanical properties and 

processability at a moderate cost. As far as mechanical properties are concerned, the 

main target is to strike a balance of stiffness, strength and toughness. To the best of our 

knowledge, no study on LLDPE toughened PLA nanocomposites have been reported 

yet. Thus, the aim of the research is to develop an environmentally friendly polymer 

nanocomposite with enhanced toughness namely LLDPE-toughened PLA/MMT 

nanocomposite. 

The main objective can further be divided into: 

� To explore the effect of LLDPE contents on the mechanical, thermal and 

morphological properties of PLA/LLDPE blends. 

� To investigate the effect of MMT concentration on the mechanical, thermal and 

morphological properties of PLA/MMT and PLA/LLDPE/MMT 

nanocomposites. 
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� To evaluate the water absorption behavior and hygrothermal aging of PLA/MMT 

and PLA/LLDPE/MMT nanocomposites. 

1.3  Scope of Research 

In order to achieve the objectives of the research the following activities were 

carried out: 

1. Sample preparation 

In this research project, sample preparation and blending was performed via melt 

intercalation method. This involves: 

i) Blending of LLDPE with PLA to produce PLA/LLDPE blends with twin screw 

extruder.

ii) Blending of MMT with PLA to produce PLA/MMT nanocomposites with twin 

screw extruder. 

iii) Blending of LLDPE and MMT with PLA to produce PLA/LLDPE/MMT 

nanocomposites with twin screw extruder. 

iv) The blends and nanocomposites fabricated into test specimens via injection 

molding for analysis. 

2. Physical and mechanical analysis 

(i) Water absorption 

(ii) Hygrothermal aging 

(iii)Tensile test 

(iv) Flexural test 

(v) Izod impact test 
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3. Characterization and morphological study 

(i)  X-ray Diffraction (XRD) 

(ii)  Scanning electron microscopy (SEM) 

(iii) Transmission electron microscopy (TEM) 

4. Thermal properties analysis 

(i)  Differential scanning calorimeter (DSC) 

(ii)  Themogravimetric analysis (TGA) 

(iii) Dynamic mechanical analysis (DMA) 

1.4  Importance of Research 

The research expects to develop a toughened nanocomposite from a renewable 

resource with balanced mechanical properties. The success of this project will widen the 

applications of PLA such as furniture, automobile parts and enables it to be considered 

as a possible substitute for conventional petroleum based plastics. 




