THE EFFECT OF MULTIPLE LIGHTNING IMPULSE ON THE ELECTRICAL CHARACTERISTICS OF TRANSIENT VOLTAGE SUPPRESSION DIODE AS LOW VOLTAGE LIGHTNING PROTECTIVE DEVICE

AZRALMUKMIN BIN AZMI

UNIVERSITI TEKNOLOGI MALAYSIA

THE EFFECT OF MULTIPLE LIGHTNING IMPULSE ON THE ELECTRICAL CHARACTERISTICS OF TRANSIENT VOLTAGE SUPPRESSION DIODE AS LOW VOLTAGE LIGHTNING PROTECTIVE DEVICE

AZRALMUKMIN BIN AZMI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical – Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2009

Specially dedicated to

my beloved father, mother and wife.

ACKNOWLEDGMENT

Firstly, I would like to take this opportunity to thanks to everybody especially to my supervisor, Assoc. Prof. Dr. Mohd. Muhridza Yaacob for guidance, support, direction and assistant for this project development and complete my thesis under his supervision.

Also thanks to Mr. Anuar Kamarudin, the lab technician of Institute of High Voltage and Current (IVAT) for his willingness to the guidance and support in handling the laboratory device.

Lastly, I would like to dedicate my appreciation to my family for their love, support and encouragement. My appreciation also goes to my entire friend those have shared their knowledge, opinion and idea throughout the completion of this project.

ABSTRACT

The behaviour and performance of surge protective devices such as transient voltage suppression (TVS) diode under the application of multiple lightning impulses are different from the single lightning impulse. Since TVS diode is commonly used and reliable device for low voltage and telecommunication systems lightning protection, a precise method of testing has to be applied based on the natural characteristics of lightning to accurately determine its performance and capability. In this work, laboratory studied are to be carried out on 1 kV voltage with multiple lightning impulse using Multiple Impulse Generator (MIGe) and 1.5 kW rating of TVS diode. The electrical response of the device such as standby current (I_D), breakdown voltage (V_{BR}) and capacitance (C) characteristic are then being analyzed to determine the effect on the TVS diode performance. The experiment results show that after applying single impulse and multiple impulse voltage produces the changes in electrical characteristic of TVS diode.

ABSTRAK

Sifat dan prestasi sesuatu peranti perlindungan dedenyut seperti penyerap voltan seketika (TVS) diod dibawah aplikasi dedenyut kilat berbilang adalah berbeza dari dedenyut kilat tunggal. Sejak penyedut voltan seketika diod seringkali digunakan dan keboleharapan untuk digunakan sebagai perlindungan kilat pada voltan rendah dan sistem telekomunikasi, langkah yang tepat bagi pengujian perlu diaplikasikan berdasarkan ciri-ciri kilat yang tepat bagi mengenalpasti prestasi dan ketahanan peranti ini. Didalam kerja ini, kajian makmal dilaksanakan menggunakan voltan 1 kV dengan dedenyut kilat berbilang menggunakan Penjana Dedenyut Berbilang (MIGe) dan 1.5 kW taraf TVS diod. Tindak balas elektrik bagi ciri-ciri peranti seperti arus sedia (I_D), voltan pecah tebat (V_{BR}) dan pemuat (C) akan dinilai bagi mengenalpasti perubahan terhadap prestasi TVS diod. Keputusan kajian menunjukkan dedenyut kilat tunggal dan dedenyut kilat berbilang menghasilkan perubahan kepada sifat elektrik bagi TVS diod.

TABLE OF CONTENTS

CHAPTER	TITLE		PAGE	
	DEC	LARAT	TION	ii
	DED	ICATIO	DN	iii
	ACKNOWLEDMENT			iv
	ABSTRACT			
	ABS	ГRAK		vi
	TAB	LE OF	CONTENT	vii
	LIST	OF TA	BLE	Х
	LIST	OF FI	GURES	xi
	LIST	OF SY	MBOLS	xiv
	LIST	OF AB	BREVIATIONS	XV
1	INTI	RODUC	TION	
	1.1	Backg	ground of project	1
	1.2	Proble	em statement	2
	1.3	Objec	tives	2
	1.4	Scope	of the research project	2
2	LITE	ERATUI	RE REVIEW	
	2.1	Lightr	ning	4
		2.1.1	Type of lightning	5
			2.1.1.1 Cloud-to-ground negative charge	5
			2.1.1.2 Cloud-to-ground downward positive	6
			charge	
			2.1.1.3 Ground-to-cloud upward charge	6
		2.1.2	Type of lightning strike	8

	2.1.3	Multiple lightning impulses	8
2.2	Transi	ent Voltage Suppression (TVS) diode	9
	2.2.1	Principle of operation	10
	2.2.2	Parameter	12
	2.2.3	Application of TVS diode	13
	2.2.4	Previous Research	14

3 RESEARCH METHODOLOGY

3.1	Introd	luction	16
3.2	Multi	ple Impulse Generator (MIGe)	19
	3.2.1	Generating operation	20
	3.2.2	Charging and discharging unit	20
	3.2.3	Triggering unit	22
		3.2.3.1 Main control unit	22
		3.2.3.2 Sub control unit	23
		3.2.3.3 Spark gap and ignition coil	24
	3.2.4	Wave shaping unit	25
		3.2.4.1 Standard single voltage impulse	26
		3.2.4.2 Multiple voltage impulse	27
	3.2.5	Measuring unit	28
	3.2.6	Test object	29
	3.2.7	MIGe procedure	30
	3.2.8	Diagnostic test	31
		3.2.8.1 Standby current (I _D) measurement	32
		3.2.8.2 Breakdown voltage (V_{BR})	33
		measurement	
		3.2.8.3 Capacitance (C) measurement	34

4 **RESULTS AND DISCUSSION**

4.1	Introd	uction	35
4.2	Impul	se waveform	36
4.3	Diagn	ostic test results	37
	4.3.1	Standby current (I _D)	37
	4.3.2	Breakdown voltage (V _{BR})	39

		4.3.3 Capacitance (C)	40
	4.4	Discussion	42
5	CON	CLUSION AND RECOMMENDATIONS	
	5.1	Conclusion	43
	5.2	Recommendation	44
REFFEREN	CES		45
Appendices A	- D		48 - 67

LIST OF TABLE

TABLE NO.	TITLE	PAGE
4.1	Standby current (I_D) measurement results	37
4.2	Breakdown voltage (V_{BR}) measurement results	39
4.3	Capacitance (C) measurement results	40

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Cloud-to-ground negative charge	6
2.2	Cloud-to-ground positive charge	6
2.3	Ground-to-cloud upward positive charge	7
2.4	Ground-to-cloud upward negative charge	7
2.5	Transient voltage suppression (TVS) diode	9
2.6	The symbol of unidirectional and bidirectional TVS diode	10
2.7	TVS diode in rest state	10
2.8	TVS diode in protective state	11
2.9	V-I Characteristic of TVS diode	12
2.10	Connection of TVS diode in circuit	14
3.1	General flow of research	17
3.2	Block diagram of MIGe	19
3.3	High voltage AC control unit	20

3.4	DC supply unit	21
3.5	Energy storage capacitor unit	21
3.6	Main control unit	22
3.7	DC power supply	23
3.8	Sub control unit	23
3.9	Spark gap	24
3.10	Ignition coil	24
3.11	Wave shaping unit	25
3.12	Circuit layout of standard single voltage impulse test	26
3.13	Circuit layout of multiple voltage impulse tests	27
3.14	Voltage divider	28
3.15	Digital Oscilloscope	28
3.16	Standby current (I_D) measurement	32
3.17	Breakdown voltage (V_{BR}) measurement	33
3.18	Capacitance (C) measurement	34
4.1	Standard single voltage impulse	36
4.2	Multiple voltage impulse	36

4.3	Comparison of standby current (I _D) between before	38
	applied impulse to after applied single impulse and	
	multiple impulse voltage	
4.4	Comparison of voltage breakdown (V _{BR}) between	40
	before applied impulse to after applied single	-10
	impulse and multiple impulse voltage	
4.5	Comparison of capacitance (C) between before	41
	applied impulse to after applied single impulse and	
	multiple impulse voltage	

LIST OF SYMBOLS

I_D	-	Standby current
V_{BR}	-	Voltage breakdown
С	-	Capacitance
L	-	Inductance
R	-	Resistor
V_{WM}	-	Rated standoff voltage
I_{FSM}	-	Rated forward surge current
V_{FS}	-	Forward voltage
V_C	-	Voltage clamping
t_f	-	Front time wave
t_t	-	Tail time wave
Ω	-	ohm

LIST OF ABBREVIATIONS

TVS	-	Transient Voltage Suppression
MIGe	-	Multiple Impulse Generator
SPD	-	Surge Protective Devices
MOV	-	Metal Oxide Varistor
GDT	-	Gas Discharge Tube
AC	-	Alternating current
DC	-	Direct current

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Product specification of 1.5KE6.8A Fairchild Semiconductor	48
В	Product specification of 1.5KE6V8A ST Microelectronic	51
С	Product specification of 1N6267A ON Semiconductor	57
D	Product specification of 1V5KE6V8A Fairchild Semiconductor	64

CHAPTER I

INTRODUCTION

1.1 Background of project

Nowadays, there are a lot of electronic equipment using the low voltage lightning protective device such as Surge Protection Device (SPD) as a protection from lightning surge especially in telecommunication industries. Any disturbance by surge even in voltage and current can cause damage and failure of functioning to the equipment connected to signal or power lines.

Most of the lightning strike has produced multiple strokes between 60 % to 70 % of ground flashes that contain average of three or four stroke/flash. For stroke more than ten strokes/flashes is about 5 %. This multiple stroke has a common time interval between strokes is 40 ms with range of 10 to 30 ms [1].

The principle component of SPD is to reduce or limit high voltages usually used such as metal oxide varistor (MOV), opto-isolator, transient voltage suppression (TVS) diode, thyristor, gas discharge tube (GDT) and others.

TVS diode is a class of diodes that are designed to conduct the surge current which is necessary to provide transient voltage protection in electrical circuits. TVS diodes exhibit relatively high impedance at normal system voltage before and after occurrence of the surge. It limits the surge voltages on equipment by providing low impedance to conduct the surge discharge current.

1.2 Problem statement

Lightning surge is one of the most common causes that damage the electrical and electronic system. In order to solve this problem, the suitable low voltage lightning protective device should be employed. Experimental results are studied in detailed and the performance of TVS diode is determined so that TVS diode can be used as reliable SPD under application of single and multiple lightning impulses.

1.3 Objectives

The objectives of this project are as follow:

- 1. To generate standard single lightning impulse and multiple lighting impulses by using Multiple Impulse Generator (MIGe).
- 2. To apply the impulse on TVS diode.
- 3. To analyze the electrical characteristic of TVS diode under single and multiple lightning impulse.

1.4 Scope of research project

Scope of work of this project is:

- To study characteristic and behaviour of transient voltage suppression (TVS) diode.
- 2. To generate 1 kV standard single voltage and multiple voltage impulse waveform of $1/1000 \ \mu s$ using Multiple Impulse Generator (MIGe) on protective device.

3. To measure and compare the changes of parameter and characteristic of transient voltage suppression (TVS) diode (stand by current, breakdown voltage, capacitance and inductance) before and after application of the standard single and multiple lightning impulse.