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Abstract 
 
The advances in medical imaging, beginning from the discovery of X-rays have nowadays opened new 
perspectives for improvements in the area of computer assisted surgical planning. Meanwhile, modern 
medical imaging techniques, such as Computer Tomography (CT) and Magnetic Resonance Imaging 
(MRI), are widely-used for diagnostic and require 3D models of human anatomy for visualization 
purposes. 3D body models provide the information on the geometrical disposition of different anatomical 
structures. In craniofacial surgery, there is a great demand for efficient computer assisted methods, 
which could enable flexible, accurate and robust simulations for the realistic prediction of postoperative 
appearance. The computer assisted surgical planning has many advantages in comparison with 
conventional planning systems. Once the virtual model of a patient is generated, various case scenarios 
of the surgical impact and their outcomes can be extensively studied. Better preparation, shorter 
operation time, lower costs are the immediate benefits. Since the improvement of the patient’s aesthetics 
is one of the main aims in craniofacial surgery, the realistic prediction of the patient’s postoperative 
appearance is an important feature of the surgical planning system, giving the surgeon unique feedback 
during the planning stage. The topic of soft tissue modeling has been the subject of intensive 
investigations of many research groups within the last few decades. Because of the complexity of soft 
tissue behavior and diverse types of application fields, a wide spectrum of approaches has been 
developed for their realistic simulation. This paper presents various approaches developed for simulation 
of human soft tissues that are being applied in the area of medical and GIS applications. 
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1.0 INTRODUCTION 
 
Computer-aided surgery is a relatively new field that has made a great impact on medicine in the last few 
years. Particularly surgical simulation has many applications in medical education and training, surgical 
planning and intra-operative assistance. Compared to traditional methods and considering the high costs 
of animal specimens, surgical simulation can be used in medical education and training to reduce costs, to 
provide experience with a greater variety of pathologies, and to enable the trainee to repeat training 
procedures over and over. In surgical planning, a simulator can reduce costs and save time by replacing 
stereo-lithographic models while still providing patient-specific anatomy in order to rehearse difficult 
procedures. Intra-operatively, computer modeling can help with the navigation of instruments by 
providing a broader view of the operation field. In combination with robotics it even can supply guidance 
by predefining the path of a biopsy needle or by preventing the surgical instrument from moving into 
harmful regions (Ervin et al., 1998). 
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Among other surgical areas in which deformable modeling of soft tissue can lead to a better 
understanding of the patient’s anatomy and may improve the outcome of surgical procedures, craniofacial 
surgery stands out. Craniofacial surgery has long been an extremely productive application area for the 
development of computer aided surgical methods - much of the initial work in 3D reconstruction and 
visualization of patient anatomy has come from this field (Altobelli et al., 1993; Bill et al., 1995; 
Zeilhofer et al., 1995). In craniofacial surgery the goal is not only to improve the functionality, but also to 
restore an aesthetically pleasing face. Therefore the realistic prediction of the ensuing soft tissue changes 
is substantial. With traditional methods only a limited forecast of these soft tissue changes can be 
achieved. The prediction is still based on empirical studies of the relationship between bone and tissue 
movements (Ervin et al., 1998). Although this relationship can be found for forward and backward shifts 
of the lower jaw, in operations involving the upper jaw or other displacements of the lower jaw, there is 
presently no satisfactory method of predicting the resulting soft tissue changes. 
 
Deformable modeling of physical objects has a long history. Since computers become an indispensable 
tool in modeling, sophisticated simulation of complex physical scenes becomes a major everlasting trend 
in computer graphics and many other applications dealing with the computer assisted modeling of 
physical reality. The simulation of deformable objects is essential for many applications. Historically, 
deformable models appeared in computer graphics and were used to create and edit complex curves, 
surfaces and solids. Computer aided design uses deformable models to simulate the deformation of 
industrial materials and tissues (Eingereicht, 2002). In image analysis, deformable models are used for 
fitting curved surfaces, boundary smoothing, registration and image segmentation. Later, deformable 
models are used in character animation and computer graphics for the realistic simulation of skin, clothing 
and human or animal characters (Kalra et. al, 1992; McInerny and Terzopolous, 1996; Hing and 
Grimsdale, 1996; Gibson and Mirtich, 1997). The modeling of deformable soft tissue is, in particular, of 
great interest for a wide range of medical imaging applications, where the realistic interaction with virtual 
objects is required. Especially, computer assisted surgery (CAS) applications demand the physically 
realistic modeling of complex tissue biomechanics. 
 
 
2.0 SOFT TISSUE MOELING TECNIQUES 
 
Generally, existing modeling approaches can be ranged into two major groups. Models based on solving 
continuum mechanics problems under consideration of material properties and other environmental 
constraints are called physical models. All other modeling techniques, even if they are somehow related to 
mathematical physics, are known as non-physical models. 
 
 
2.1 Non-Physical Models 
 
Non-physical methods for modeling of deformable objects are usually based on pure heuristic geometric 
techniques or use a sort of simplified physical principles to achieve the reality-like effect. These 
techniques are very popular in computer graphics and sometimes used in real time applications, since they 
are computationally efficient in comparison with expensive physical approaches. 
 
 
2.1.1 Spline Techniques 
 
Many early approaches for modeling deformable objects were developed in the field of computer aided 
geometric design (CAGD), where flexible tools for creation of interpolating curves and surfaces as well 
as the intuitive ways to modify and refine these objects were needed. From this need came Bezier-curves 
and subsequently many other methods of compact description of warped curves and surfaces by a small 
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vector of numbers, including B-splines, non-uniform rational B-splines (NURBS) and other types of 
spline techniques. 
 
The spline technique is based on the representation of both planar and 3D curves and surfaces by a set of 
control points, also called landmarks. The main idea of spline based methods is to modify the shape of 
complex objects by varying the position of few control points. Also the number of landmarks as well as 
their weights can be used for adjustment of the object deformation. Such parameter based object 
representation is computationally efficient and supports interactive modification. A comprehensive 
introduction in curve and surface modeling with splines can be found in (Bartels et al., 1987). 
 
A particular group of landmark-based techniques represent methods, which are used in the elastic image 
registration and based on radial basis functions derived from some special closed-form solutions of 
elasticity theory. In Bookstein (1989), a spline technique based on the radial basis function r log(r) 
derived from the linear elastic solution of the thin-plate deformation problem is proposed. Such thin-plate 
splines (TPS), globally defined in the image domain, are used for interpolation of the deformation given 
by the prescribed displacements of control points. Extended TPS-techniques are described in Rohr et al. 
(1996). In Davis (1996), an analogous landmark-based approach is proposed, where elastic body spline 
(EBS) derived from the special solution of 3D elasticity is used as an interpolating radial basis function. 
 
 
2.1.2 Free-Form Deformation 
 
Free-form deformation (FFD) became popular in computer assisted geometric design and animation in the 
last decade. The main idea of FFD is to deform the shape of an object by deforming the space in which it 
is embedded. In early work (Barr, 1984), a general method based on the geometric mappings of 3D space 
was proposed. This deformation technique uses a set of hierarchical transformations for deforming an 
object, including rigid motion, stretching, bending, twisting and other operators. The elementary space-
warpings are obtained by using the surface normal vector of the under formed surface and a 
transformation matrix to calculate the normal vector of an arbitrarily deformed smooth surface. Complex 
objects can be created from simpler ones, since the deformations are easily combined in a hierarchical 
structure. The position vector and normal vector in more complex objects are calculated from the position 
vector and normal vector in simpler objects. Each level in the deformation hierarchy requires an 
additional matrix multiply for the normal vector calculation. 
 
The term free-form deformation has been introduced in a later work (Sederberg and Parry, 1986), where a 
more generalized approach based on the embedding an object in a grid of mesh points of some standard 
geometry, such as a cube or cylinder, has been proposed. 
 
The basic FFD method has been extended by several others (Coquillart, 1990; Chang and Rockwood, 
1994). In (Masutani et al, 2001), a modally-controlled FFD technique based on a combination of the FFD 
method and the modal analysis (Pentland et al., 1991) for the non-rigid registration in image-guided 
surgery is presented. 
 
 
2.2 Physical Models 
 
Physically based methods explicitly use laws of physics (and possibly known biomechanical properties) 
to model objects, calculating internal and external forces in order to determine an object's deformation. 
Much recent research, and practically all recent research in the context of surgery simulation, has worked 
on developing such physically based models. By modeling the physics as accurately as possible, the hope 
is that the models can achieve visual realism for generic models, and perhaps physical accuracy where 
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specific patient data or other object data is known. 
 
At the same time, we must keep in mind that using physically based models to calculate deformations 
requires assumptions and approximations at many steps of the process. The models themselves are 
naturally simplifications of the physics, generally making several assumptions about properties of the 
material (Brown, 2003) and many others). Physical parameters used in the models may be unknown, 
heavily estimated, or sampled from ranges of values. They may derive from animal or cadaver data 
(Ottensmeyer and Kenneth, 2001), and rarely account for patient-specific material properties, which may 
vary with age, health, and other factors (Fung, 1993). The geometry of the object is usually discretized 
(into some computer-graphics-friendly representation), and sometimes the geometry is also further 
simplified (e.g. as point masses or surface models). The structure of the body is also approximated, 
possibly lumping together disparate tissue types, such as skin, fat, muscles, and tendons e.g. (Koch et al., 
1996). Finally, issues such as self-collisions in a deformable object, external collisions with other objects, 
and user interactions with an object (e.g. pulling, cutting, and suturing of tissues in a surgical simulator) 
are often treated by an entirely different model.  
 
In the applications, which demand the realistic simulation of deformable physical bodies, there is no 
alternative to consistent physical modeling, i.e., numerical solving partial differential equations (PDEs) of 
elasticity theory. The major problem of physical modeling is that  
 

1. The observed physical phenomena can be very complex and  
2. Solution of underlying PDEs requires substantial computational expenses.  

 
The answers to these two questions consist in 
 

1. Finding an adequate simplified model of the given problem covering the essential observations 
and 

2. Applying efficient numerical techniques for solving the PDEs. 
 
A variety of approaches for deformable modeling, which have been developed in the past, were bound to 
give their particular answers to these two questions. It is difficult to trace who first proposed a working 
physical model of deformable living tissue. The study of biomechanical properties of living tissues and 
their numerical modeling was triggered by single research programs of car, space and military-industry 
beginning from the 50s and later substantially boosted in the early 80s with the development of computer 
tomography (Bajcsy and Broit, 1982). Further physically motivated techniques for elastic registration and 
segmentation of medical images are discussed in (Kass et al., 1988; Bajcsy and Kovacic, 1989). In the 
last decade, various approaches and applications related to biomechanical modeling is developed. These 
methods can be classified by different criteria. One of such classifications is based on the type of the 
numerical technique used in the modeling approach. There are four common numerical methods for 
physically based modeling of deformable objects. These are 
 

1. Mass-Spring Damper Systems 
2. Finite Difference Method 
3. Boundary Element Method 
4. Finite Element Method 

 
 
2.2.1 Mass-Spring Damper System (MSD) 
 
A mass-spring mesh (sometimes referred to as a particle system) is a set of point masses (nodes) 
connected by elastic links. It approximates the tissue geometry, in general containing a surface mesh 
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which explicitly defines the boundary of an object or a cloud of points or balls that represents the object's 
shape. The physical body is represented by a set of mass-points connected by springs exerting forces on 
neighbor points when a mass is displaced from its rest positions. MSD systems can be seen as a simplified 
model of particle interaction, since physical bodies in fact consist of discrete sub-elements, atoms and 
molecules. The spring forces Fs are usually considered to be linear (Hookean); 

 
ukF s −=         (1) 

 
where u is the displacement of mass-point and k denotes the spring constant corresponding to the material 
stiffness. The Newton equations of motion for the entire system of N mass-points under the external 
forces Fex are given by 
 

exFK
dt
dC

dt
dM =++ uuu

2

2

     (2)  

 
where M, C and K are the 3N X 3N mass, damping and stiffness matrices, respectively. The solution of 
(2.2) respectively the displacements u yields the linear elastic deformation of a physical body discretized 
by N mass-points.  
 
In several publications (Platt and Badler, 1981; Terzopoulos and Waters, 1990; Teschner, 2000; 
Bookstein, 1989), dynamic mass spring systems for facial modeling are described. In this approach, a 
multi-layer meshes of mass points representing three anatomically distinct facial tissue layers: the dermis, 
the subcutaneous fat layer and the muscle layer is used.  In Keeve et al. (1996), a mass spring model of 
facial tissue for the soft tissue prediction in craniofacial surgery simulations is proposed. Alternatively to 
(1), non-linear springs  can be used to model soft tissue, which generally exhibits non-linear 
elastic behavior (Teschner, 2000). 

n
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The major drawback of MSD systems is their insufficient approximation of true material properties. 
Being a very simplified model of mechanical continuum, particle systems do not provide the required 
accuracy for the realistic simulation of complex composite materials such as soft tissue. MSD systems are 
also weak, if complex, arbitrary shaped objects such as thin surfaces, which are resistant to bending, are 
to be modeled (Eingereicht, 2002). 
 
 
2.2.2 Finite Difference Method 
 
 The finite difference method (FDM) is historically the first true discretization technique for solving 
partial differential equations. The general approach of the FDM is to replace the continuous derivatives 
within the given boundary value problem with finite difference approximations on a grid of mesh points 
that spans the domain of interest. Consequently, the differential operator is approximated by an algebraic 
operator as for instance 
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where h is the characteristic dimension of the discretization. The resulting system of equations can then 
be solved by a variety of standard techniques. A general algorithm for the finite difference discretization 
of linear boundary value problems is as follows: 
 

1. Convert continuous variables to discrete variables. 
2. Approximate the derivatives at each point using formulae derived from a Taylor series expansion 

using the most accurate approximation available that is consistent with the given problem. 
3. Assemble the linear system of equations respectively to the nodal values. 
4. Apply boundary conditions on the boundary points separately. 
5. Solve the resulting set of coupled equations using either direct or iterative schemes as appropriate 

for the given problem. 
 
The FDM achieves efficiency and accuracy when the geometry of the problem is regular. The FDM is 
usually applied on cubic grids, which are naturally given by pixels or voxels of 2D or 3D digital images, 
respectively. However, the discretization of objects with the irregular geometry becomes extremely dense, 
which requires extensive computational resources for data storage and system solving. 
 
Sarti et al. (1999) discuss the FD approach for the linear elastic prediction of facial tissue in craniofacial 
surgery planning is applied. Massively parallel super-computers are used to compute the deformation of 
120 x 120 x 150 voxel-grids derived directly from 3D tomographic datasets. 
 
 
2.2.3 Boundary Element Method 
 
A general principle of solving the boundary value problem given by the partial differential equation 
(PDE) and the boundary conditions consists in bringing the differential problem into an integral form. For 
a certain class of problems, the resulting integration over the whole domain of interest can be substituted 
by the integration over the boundary Γ⊂Ω. Consequently, only the boundary of the domain has to be 
discretized, which in turn means that 
 

1. The dimension of the resulting system of equations is significantly smaller than in the case of 
total volume discretization, 

2. The difficult problem of volumetric mesh generation becomes redundant. 
 
For the differential operator of elasticity theory, such boundary integral formulation can be obtained. In 
Brebia (1984) and Beskos (1987), the boundary element method (BEM) for static and dynamic problems 
of continuum mechanics is described. Unfortunately, the volume integrals in the BEM can be completely 
eliminated only if  
 

1. The material is homogeneous and 
2. No volumetric forces are given. 

 
This is generally not the case in soft tissue modeling. Furthermore, the system matrix when using BEM is 
fully occupied, which makes the application of efficient iterative solving techniques difficult or even 
impossible. The investigation carried out in Gladilin et al. (1999) shows that the condition of the BEM 
system matrix essentially depends on the smoothness of the domain boundary, which possibly requires 
additional boundary smoothing to achieve the required accuracy of the solution. For elastic registration of 
medical images, the BEM is, in general, not that robust and flexible as the finite element method. 
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2.2.4 Finite Element Method 
 
The finite element method (FEM) becomes the ultimate “state of the art” technique in physically based 
modeling and simulation. The FEM is superior to all previously discussed methods when accurate 
solution of continuum mechanics problems with the complex geometry has to be found. It also provides 
the most flexible modeling platform free of all limitations with respect to the material type and the 
boundary conditions (Eingereicht, 2002). 
 
More accurate physical models treat deformable objects as a mechanical continuum: solid bodies with 
mass and energies distributed throughout the three dimensional domain they occupy. Unlike the discrete 
MSD systems, the FEM is derived directly from the equations of continuum mechanics. In a difference to 
the FDM, the differential operators are not approximated by simple algebraic expressions, but applied “as 
they are” on the subspaces of those admissible solution fields. The difference to the BEM consists in the 
volume integration, which enables a more general approach to the continuum modeling. 
 
In elasticity theory, the deformation of a physical body is described as the equilibrium of external forces 
and internal stresses. The static equilibrium for an infinitesimal volume is given by the partial differential 
equations, which implies the relationship between the deformation variables such as stresses, strains or 
displacements and the applied force density, and also contains the constants describing the object material 
properties. To compute the object deformation, the PDEs of elasticity theory have to be integrated over 
the domain occupied by a body. Since it is usually impossible to find a closed-form analytical solution for 
an arbitrary domain, numerical methods are used to approximate the object deformation for a discrete 
number of points (mesh nodes). MSD or FD methods approximate objects as a finite mesh of nodes and 
discretize the equilibrium equation at the mesh nodes. The FEM divides the object into a set of elements 
and approximate the continuous equilibrium equation over each element. The main advantage of the FEM 
over the node-based discretization techniques is the more flexible node placement and the substantial 
reduction of the total number of degrees of freedom needed to achieve the required accuracy of the 
solution. 
 
The main idea of continuum based deformable modeling consists in the minimization of the stored 
deformation energy, since the object reaches equilibrium when its potential energy is at a minimum. The 
basic steps of the FEM approach to compute the object deformations are the following: 
 

1. Derive an equilibrium equation for a continuum with given material properties. 
2. Select the appropriate finite elements and corresponding interpolation functions for the problem. 
3. Subdivide the object into the elements. 
4. All relevant variables on each element have to be interpolated by interpolation functions. 
5. Assemble the set of equilibrium equations for all of the elements into a single system. 
6. Implement the given boundary constrains. 
7. Solve the system of equations for the vector of unknowns. 

 
Finite element methods enable the most realistic simulation of deformable living objects. However, even 
this sophisticated approach has its limitations. The material properties of living tissues are highly complex 
and usually have to be estimated empirically. Living objects are composite materials with a very complex 
geometrical structure. Various contact and obstacle problems are associated with the modeling of such 
multi-body systems. A general problem concerns the modeling of large deformations. A widely used 
linear elastic approach can only be applied under the assumption of small deformations, which often does 
not hold for soft tissue rearrangements in craniofacial surgery interventions. All these and many other 
problems make the consistent FE based modeling of soft tissue a very challenging task. 
 
In FE analysis, the governing matrix equation is  
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        (5) fKdDdMd =++ '''

where M is the mass matrix, D is the damping matrix, K is the stiffness matrix, d is the nodal displacement 
and f is the applied force.  The size of each matrix is n x n, where n is the number of nodes in the model 
times the degrees of freedom (three, in the case of three-dimensional effects).  In static analysis, mass and 
damping components are set to zero.  Each of these matrices is assembled from the elements of a FE mesh.  
Since the elements are of simple shapes (e.g., tetrahedrons), continuum mechanics can be used to define 
their behavior.  By assembling these elements together, the behavior of a material with rather complex 
geometry can be approximated.   

 
The FE analysis is widely used for modeling deformable living tissues in medical imaging and CAS 
applications (Cotin et al., 1996; Bro-Nielsen and Cotin, 1996; Bro-Nielsen, 1997; Ferrant et al., 1999). 
The most advanced FE based approach for modeling of facial tissue within the scope of the craniofacial 
surgery planning is discussed in Koch et al. (1996), Roth et al. (1998). Throughout all these and other 
early works, the linear elastic approximation of soft tissue behavior is typically usually used. In Picinbono 
et al. (2000) and Wu et al. (2001), the application of the non-linear elastic FEM for real-time simulations 
of surgical interventions is reported.  
 
 
3.0 DISCUSSION 
 
In mass-spring system, discretizing a volumetric tissue as point masses and springs is an approximation. 
Increasing the density of the masses and springs can lead to both a better approximation of the geometry 
and more choices (for mesh topology and physical parameters) with which to affect the deformation, 
although making these choices present more difficulties. The topology of a mesh is often ad hoc, but 
since forces can only travel along the spring vectors, the choice of topology can be important. There is the 
possibility that certain deformations can be "out of range," causing springs to cross each other and create 
implausible penetration of tissues, and preventing a tissue from ever returning to its initial state.  
 
Choosing parameters for springs and dampers is also very difficult.  Gelder (1998) proves that a 2D 
spring mesh cannot exactly mimic the deformation of constant strain finite elements, but derives a 
formula for close approximation. Dynamic simulation suffers from a few potential problems and stiff 
springs lead to "stiff" differential equations, which require small integration time steps, and are thus 
slower to solve. And if mesh density is increased, not only are there more masses and springs in the 
computation, but the increased number of shorter springs must be stiffer to represent the same 
deformation. As the integration time steps become smaller, it requires more computation time to integrate 
the equations of motion, which can lead to "synchronicity" problems. On the plus side, mass-spring 
systems are relatively fast and allow to implement and allow simulation of a wide range of objects, 
including visco-elastic tissues encountered in surgery 
 
Finite element methods allow for the continuous solution of displacements in a volumetric object. They 
do not suffer from ad hoc topology to the same extent as mass-spring models. However, many 
approximations are still made. The choice and size of elements and the choice of interpolation functions 
affect the accuracy of the solution. Speed of computation is a major concern for FEMs. The large matrix 
equations are slow to solve, so real-time performance is typically only achieved via further 
approximations. 
 
The mass-spring approach can not model the exact physical properties of human soft tissue; instead they 
have to be expressed with tools of masses and springs. On the other hand, the finite-element approach 
models the physical properties of the facial soft tissue more precisely. Although the simulation is time 
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consuming and cannot be done interactively, it highly improves the precision of the simulation and can be 
used off-line to verify the chosen surgical procedure. 
 
Certain limitations arise in predicting the individual postoperative appearance. The non-linear material 
properties can be mathematically described by the finite-element model. However, to model the visco-
elasticity as well as the short-term and long-term relaxation, more complex finite-element formulations 
have to be utilized, which will result in more time consuming calculations. These findings have to be 
incorporated into the mathematical description in order to model the exact biomechanical behavior of 
living tissue.  
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