PERFORMANCE PREDICTION FOR HIGH SPEED CRAFT

ANUAR BIN BERO

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Marine Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2009

Dedicated with love to my wife and children

ACKNOWLEDGEMENT

In the name of ALLAH the most Merciful and praise to Prophet Muhamad S.A.W, i am able to complete my thesis. I wish to express my sincere appreciation to my thesis supervisor Ir. Dr. Mohamad Pauzi bin Abd Ghani for encouragement, guidance, critics and friendship. Without his continued support and concern, this thesis would not have been completed.

I also would like to express my gratitude to Researcher Officer and all technicians at Marine Technology Laboratory, UTM for assisting me in conducting model testing. I am also thankful to Librarians of Universiti Teknologi Malaysia (PSZ UTM Skudai) for their assistance in providing the relevant literatures. Furthermore, i want to express my appreciation to my Head of Engineering Faculty, Cdr Mazlan Bin Yassin RMN for his support and motivation while completing this thesis.

Special gratitude to my beloved wife Habsah and children Iman and Hazim for their support and inspiration during my research study. Also thank to my mother, father and to my colleague, your support will be remembered.

ABSTRACT

Generally the performance of the high speed craft can be divided into six main components such as resistance and powering, propulsion, dynamic instability, seakeeping and manoeuvring. Performance prediction on high speed craft especially in planing hull is complicated due to complex combination of ship behaviour in rough sea condition. The performance of high speed craft is becoming more important due to their various functions and purposes to marine community which is unable to be predicted using conventional methods. The fundamental of this research is to study the two main components of the vessel i.e. resistance and seakeeping quality by incorporating stern foil at aft portion planing craft (M Hull) that gives significant effect to the performance of the vessel. Theoretically, stern foil has a similar function with transom flap, trim wedges and trim tab which is to reduce the resistance and also as a damping for motion reduction. In the scope of resistance performance for this vessel with stern foil, the Savitsky and two dimensional Methods are used for resistance prediction at different angle of attack. While Computational Methods i.e. SEAKEEPER program was applied to seakeeping prediction in regular wave (head sea). Both result of resistance and seakeeping performance prediction was validated by conducting model test for the model with and without stern foil. The performance of ship model with stern foil gives a positive performance in term of seakeeping quality at constructive resistance. By adapting with stern foil the heave and pitch Response Amplitude Operator (RAO) trim down by 4.0% and 18.91% respectively. Furthermore, the reduction of forward and aft acceleration RAO also occurs concurrently which the decreasing of both acceleration are 21.10% and 6.14%.

ABSTRAK

Secara amnya, prestasi kapal laju dibahagikan kepada enam komponen utama iaitu rintangan dan daya tujahan, dorongan, ketidakstabilan dinamik, seakeeping dan manoeuvring. Anggaran terhadap prestasi kapal laju terutamanya planing hull adalah sangat sukar disebabkan gandingan sifat kapal yang komplek pada keadaan laut yang bergelora. Kajian ini lebih menumpukan kepada dua perkara iaitu rintangan dan kualiti seakeeping pada kapal laju berbentuk M Hull yang dipasang dengan foil Secara teori, foil buritan mempunyai fungsi yang sama dengan kepak buritan. buritan, baji buritan dan trim tab yang mana berpotensi bagi mengurangkan rintangan dan juga sebagai peredam untuk meminimumkan pergerakan kapal. Kaedah anggaran Savitsky dan dua dimensi telah diaplikasi bagi mengira prestasi rintangan kapal yang mempunyai sudut pesongan yang berbeza. Sementara program simulasi SEAKEEPER pula digunakan dalam anggaran sifat kapal seperti heave, pitch, pecutan haluan dan buritan pada keadaan ombak yang seragam. Hasil keputusan secara teori bagi pengiraan rintangan dan simulasi seakeeping dibandingkan dengan keputusan data ujian rintangan dan ujian seakeeping untuk mengesahkan prestasi kapal dengan foil buritan atau sebaliknya. Ini dibuktikan secara eksperimen, dengan memasang foil buritan prestasi kapal laju dapat ditingkatkan yang mana pengurangan heave RAO sebanyak 4% dan pitch RAO 18.91%. Malahan pecutan haluan dan buritan juga berkurang, masing-masing menunjukkan prestasi dapat ditingkatkan sehingga 21.10% dan 6.14%.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	i
	DEDICATION	iv
	ACKNOWLEDGEMENTS	v
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	NOMENCLATURE	xix
	LIST OF APPENDICES	xxiii
1	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Objective	2
	1.3 Scope of Work	2
	1.4 Schedule of the Project	2
	1.4.1 Project I	2
	1.4.2 Project II	3
2	LITERATURE REVIEW	5
	2.1 Introduction	5
	2.2 Planing Craft	7
	2.2.1 Geometry of Planing Craft	8

2.3	Behaviour of Planing Craft	10
	2.3.1 Calm Water	10
	2.3.2 Rough Water	12
2.4	Hydrodynamic forces on Planing Craft	16
2.5	Transom or Stern Flap Performance	21
2.6	Theory of Foil	23
	2.6.1 Physical Features of a Foil	25
	2.6.2 Selection of Foil and Strut	26
ME	THODOLOGY	29
3.1	Introduction	29
3.2	Resistance	29
3.3	Seakeeping	34
3.4	Concluding Remarks	39
RES	SISTANCE	40
4.1	Introduction	40
4.2	Resistance Components	41
4.3	Savitsky Method	44
4.4	Controllable Transom Flaps (Trim Tabs)	47
4.5	Stern Foil	49
4.6	Resistance Components on the Foil and Strut	51
	4.6.1 Viscous Resistance	51
	4.6.2 The Induced Resistance	53
	4.6.3 Wave Resistance	54
	4.6.4 Spray Resistance	57
4.7	The Combination Total Resistance	57
4.8	Sinkage and Trim	58
4.9	Program Development of Resistance Prediction	59
4.10	Concluding Remarks	59

5 SEAWORTHINESS

3

4

60

5.1	Introdu	uction	60
5.2	Regula	ar Waves	64
5.3	Motion	n in Regular Waves	65
	5.3.1	Lateral Plane Motion in Regular Beam Seas	65
	5.3.2	Vertical Plane Motion in Regular Head Waves	66
5.4	Couple	e Heave and Pitch Motion in Head Sea	66
	5.4.1	Basic Concept of Couple Heave and Pitch Motion	68
5.5	Calcul Stern H	ation Method for Vertical Motions by effect of Foil	69
	5.5.1	Exciting Forces and Moments due to Stern Foil for Planing Hull	70
	5.5.2	Solution of the Motion Equation with Stern Foil	72
5.6	SEAK	EEPER Program	73
	5.6.1	Coordinate System	74
	5.6.2	Wave Spectra	75
	5.6.3	Idealised Spectra	76
	5.6.4	Encounter Spectrum	77
	5.6.5	Characterising Vessel Response	77
	5.6.6	Response Amplitude Operator (RAO)	77
	5.6.7	Calculating Vessel Motions	78
5.7	Conclu	ading Remarks	78
RES	EARCH	І ОВЈЕСТ	80
6.1	Introdu	uction	80
6.2	Conclu	ading Remarks	84
ANA	LYSIS		85
7.1	Introdu	uction	85
7.2	Resista	ance Analysis	86

	7.3	Seakeeping Analysis	93
	7.4	Concluding Remarks	103
8	CON	CLUSION	104
	8.1	Conclusion	104
	8.2	Future Work	105
REFERENCES	S		106
Appendices A-I	Ξ		110-161

xi

LIST OF TABLES

TABLE NO	TITLE	PAGE
3.1	Wave Spectrum Details	35
3.2	Summaries of Experiment Data	37
4.1	Typical Values of ship Model Ship Correlation CA	44
4.2	The Summaries of Savitsky Method	45
4.3	Parameter of Flap Ranges	48
5.1	Ship's six degree of Freedom (6.D.O.F)	63
6.1	Main Particular of Planing Craft (M-Hull)	81
6.2	Stern Foil Parameters	81
7.1	Resistance Result for a Ship without Stern Foil	86
7.2	Resistance Result for a Ship with Stern Foil 0°	87
7.3	Resistance Result for a Ship with Stern Foil 3°	88
7.4	Resistance Result for a ship without and with Stern Foil (Hull Speed Program)	89

xii

7.5	Sinkage and Trim Result for a Ship without and	
	with Stern Foil	92
7.6	Experiment Result Heave and Pitch RAO	93
7.7	Calculation Result Heave and Pitch RAO	
	using Strip Theory	95
7.8	Forward and Aft Acceleration RAO without and	
	with Stern Foil	99

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
1.1	Project Flowchart	4
2.1	Forces Acting on a Planing Hull	6
2.2	The Simplest Geometry of Planing Surface	9
2.3	The Main Features of a Prismatic Planing Surface	10
2.4	Spring Mass System	13
2.5	Response of a Linear Spring Mass System	15
2.6	Resistance Curves of Planing Hull L/B=3.1	16
2.7	Resistance Curves of Planing Hull L/B=7.0	17
2.8	The Location of Stern Flap	22
2.9	The Flap is mounted to the Transom at an Angle Relative to the Ship Centerline Buttock	22
2.10	Typical Foil Lift Curves	25
2.11a	Foil Parameters Plan View	26

2.11b	Foil Parameters Sectional View	26
2.12	Foil Configuration	27
2.13	Dimension of the Research Foil and Strut	27
2.14	Resistance and Motion Optimisation at 0° Angle of Attack	28
2.15	The Drag Coefficient as a Function of Angle of Attack	28
3.1	The Flowchart of FORTRAN Programming for Resistance	31
3.2	The Flowchart of Subroutine FORTRAN Programming for Resistance Prediction	32
3.3	The Flowchart of Resistance Test Procedure	33
3.4	The Flowchart of Motion Prediction using SEAKEEPER	36
3.5	The Flowchart of Seakeeping Test Procedure	38
4.1	Breakdown of Resistance in Components	41
4.2	Force Act on Planing Hull	45
4.3	Planing Hull with Transom Flap	48
4.4	Lifting Effect on Planing Vessel	50
4.5	The Drag Force on Foil by using Conservation of Fluid Momentum	51
4.6	Steady Potential Flow Past a Two Dim. Infinite Fluid	53

4.7	The Flow due to the Foil by Two Vertices	
	with Opposite Circulation	56
5.1	Long Wen's Experiment Model	62
5.2	Prismatic Hull Model	62
5.3	Types of Ship Motions	63
5.4	Regular Waves Generated in Towing Tank	65
5.5	The High Speed Craft (M-Hull) Incorporated Stern Foil	69
5.6	Theory of Wing	71
5.7	Effective Length of Stern Foil	72
5.8	Coordinate System in SEAKEEPER Program	74
5.9	Wave Direction in SEAKEEPER Program	75
5.10	Typical Wave Spectrums	76
5.11	Typical Heave and Pitch RAO's	78
6.1	Body Plan of Planing Craft (M-Hull) without Stern Foil	82
6.2	Body Plan of Planing Craft (M-Hull) with Stern Foil	82
6.3	Resistance Test without Stern Foil	83
6.4	Resistance Test with Stern Foil	83
6.5	Wave Contour in Seakeeping Test	83

6.6	Seakeeping Test in Progress	84
7.1	The Vessel Installed with Stern Foil	85
7.2	Graphs on Comparison between Theory and Experiment for Resistance without Stern Foil	87
7.3	Graphs on Comparison between Theory and Experiment for Resistance with Stern Foil at 0° Angle of Attack	88
7.4	Graphs on Comparison between Theory and Experiment for Resistance with Stern Foil at 3° Angle Of Attack	89
7.5	Graphs on Comparison Ship Resistance for without and wi Stern Foil (Savitsky Method and Hull Speed Program)	th 90
7.6	Graphs on Comparison between a Ship without and with Stern Foil (EXP)	90
7.7	Graphs on Comparison between a Ship with and without Stern Foil (Theory)	91
7.8	Graphs on Comparison of Sinkage between a Ship with and without Stern Foil	92
7.9	Graphs on Comparison of Trim between a Ship with and without Stern Foil	92
7.10	Graphs on Comparison of Heave And Pitch RAO in Different Method for a Ship with Stern Foil	94
7.11	Graphs on Comparison Heave RAO (SEAKEEPER)	96
7.12	Graphs on Comparison Heave RAO (Experiment)	96

xvii

xviii

7.13	Graphs on Comparison Pitch RAO (SEAKEEPER)	97
7.14	Graphs on Comparison Pitch RAO (Experiment)	97
7.15	Graphs on Comparison Pitch RAO (Experiment, Ship Theory and SEAKEEPER Program)	98
7.16	Graphs on Comparison Heave RAO (Experiment, Ship Theory and SEAKEEPER Program)	99
7.17	Graphs on Comparison Forward Acceleration RAO	100
7.18	Graphs on Comparison Aft Acceleration RAO	100
7.19	Record Curves of Heave Amplitude	101
7.20	Record Curves of Pitch Amplitude	102
7.21	Record Curves of Forward Acceleration Amplitude	102
7.22	Record Curves of Aft Acceleration Amplitude	103

NOMENCLATURE

LOA	-	Length Overall (m)
L_{WL}	-	Length waterline (m)
B _{oa}	-	Breadth overall (m)
$B_{WL} \\$	-	Breadth at waterline (m)
Т	-	Moulded draft (m)
Δ	-	Displacement (tone)
∇	-	Volume (m ³)
V	-	Ship speed (m/s)
LCB	-	Longitudinal Centre of Buoyancy (m)
LCG	-	Longitudinal Centre of Gravity, from transom (m)
B/T	-	Breadth draught ratio
L/B	-	Length breadth ratio
$L/\nabla^{1/3}$	-	Length-displacement ratio
g	-	Specific gravity (9.81 m/s^2)
ρ	-	Mass density, (1025 kg/m ³)
ν	-	Kinematic velocity, m ^{2/} s
R_n	-	Renault number $\frac{VL}{v}$
$\mathbf{F}_{\mathbf{n}}$	-	Froude number V/\sqrt{gL}
S	-	Wetted surface area
R_{T}	-	Total resistance (N)
$R_{\rm F}$	-	Friction resistance according to the ITTC-1957 friction formula (N)
R_R	-	Residual resistance (N)
\mathbf{P}_{E}	-	Effective power (kW)
$1 + k_1$	-	Form factor the viscous resistance of the hull form in relation to $R_{\rm F}$
$C_{\rm F}$	-	Coefficient of friction
C_R	-	Residuary resistance coefficient

C_A	-	Ship model-ship correlation
C_{T}	-	Total resistance coefficient
\mathbf{i}_{E}	-	The angle measured in the plane of the water plane, between the hull
		and the centerline (deg)
β	-	Deadrise angle (deg)
C _B	-	Block coefficient
C_{WP}	-	Waterplane area coefficient
$R_{\rm W}$	-	wave resistance
C_M	-	Midships coefficient
C _P	-	Prismatic coefficient
C_{v}	-	Speed Coefficient $\frac{V}{\sqrt{gB_{WL}}}$
τ	-	Trim angle (deg)
C_{Lo}	-	Flat plate lift coefficient
$C_{L\beta}$	-	The lift coefficient for finite deadrise
λ	-	Wetted length beam ratio
λ_k	-	Wetted length of the keel (m)
W	-	Vessel Displacement (N)
R_{nb}	-	Renault Number based on B _{WL}
$\Delta C_{\rm F}$	-	Correction factor which obtained from ATTC Standard Roughness
I _w	-	Linearized Integral
Wi	-	Vertical Inflow Velocity
arphi	-	Velocity Potential
I	-	Circulation
D	-	Foil Drag
R_{v}	-	Viscous resistance Foil or Strut (N)
C_{Dv}	-	Viscous resistance coefficient Foil or Strut
L_v	-	Lift Force due to Viscous
C_{Lv}	-	Lift coefficient due to Viscous
C_F	-	Friction coefficient
R_{nc}	-	Reynolds number Chord Based
t/c	-	Foil thickness to chord ratio
V	-	Ship speed (m/s)
С	-	Chord length (m)

ν	_	Kinematic viscosity (m^2/s)
А	_	Planform area Foil or Strut (m)
R _i	_	Induced resistance Foil or Strut (N)
L_i	_	Lifting Force (induced) Foil or Strut
C _{Di}	_	Induced resistance coefficient
C _{Li}	_	Lift coefficient
A	_	Aspect ratio, $\left(\frac{4s}{\pi c_0}\right)$
α	-	Angle of attack (radian)
c_0	-	Chord length at midspan (m) $(s^2) = 2$
А	-	Planform area (projected area of the elliptical foil $\binom{s^2}{\Lambda}$ (m ²)
S-	-	Span length (m)
$A(\theta)$	-	Complex wave amplitude function
В	-	Parabolic strut
C_{Lw}	-	Lift coefficient (wave)
R_w	-	Wave resistance Foil (N)
C_{Dw}	-	Wave resistance coefficient
C_{Lw}	-	Lift coefficient
f	-	Maximum camber (m)
R_s	-	Spray Resistance
$\sum F$	-	The sum of various fluid forces (vertical hydrodynamic forces as well
		as the wave excitation force)
$\sum M$	-	The sum of corresponding moments acting on the vessel because of
		relative motion of vessel and wave.
<i>ż,ż,z</i>	-	Heave acceleration, velocity and displacement, respectively.
<i></i> <i>, , , </i>	-	Pitch angular acceleration, velocity and displacement respectively.
Δ/g	-	Mass of vessel.
Iyy	-	Pitch inertia moment of vessel.
a_{zz}, b_{zz}	$_z, c_{zz}, a_{z\theta}$, $b_{z\theta}$, $c_{z\theta}$, $a_{\theta\theta}$, $b_{\theta\theta}$, $c_{\theta\theta}$, $a_{\theta z}$, $b_{\theta z}$, $c_{\theta z}$ - Stability derivatives
ΔF	-	Foil excited force
ΔM	-	Foil excited moment
ζ	-	Amplitude of heaving (m)
α	-	Maximum slope of the surface wave
ω	-	Frequency of the surface

3	-	Phase angle between exciting moment and wave elevation
ω ₀	-	Wave frequency
Λ	-	Tuning factor $= \omega / \omega_0$
М	-	Magnification factor = 1 / { $(1 - \Lambda^2)^2 + 4k^2 \Lambda^2$ } ^{1/2}
δΔ	-	Added mass moment of Inertia
k_{xx}^2	-	Radius of gyration
\in_1	-	phase angle between exciting moment and wave elevation

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Details Planning for Project I and II	110
В	Resistance and Seakeeping Test	112
С	Sample of Resistance Prediction	130
D	FORTRAN Programming on Resistance Prediction	141
Е	Offset Table 130.275 Tonnes High Speed Craft	160

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Generally, the performance of high speed craft is difficult to obtain due to several factors that shall be considered by designer such as resistance and powering, propulsion, dynamic instability, seakeeping and manoeuvring criteria. Normally, all these considerations are not fully achieved due to low budget and the owner has to cut cost. Another factor that contributes to the failure of performance of high speed craft is many of the assumptions used either with numerical or experimental techniques. The formulation of conventional vessel is not suitable for predicting the performance of high speed craft especially after several modifications has been conducted on their hullform.

High speed crafts are known to have rough water problem is essentially one of compromise between speed and seakeeping performance. As the speed of vessels increases, the resistance also increase and required more power to move. At high speed regime, the seakeeping becomes more important especially for passengers vessel and vessel fit in with high technology equipment. However, speed is the main factor and followed by comfort condition (seakeeping quality) to be considered during preliminary design of this vessel and that factor must go well with rough sea condition in order to achieve the mission or task within time frame.

In this study will discuss in detail the performance prediction of high speed craft in term of resistance and seakeeping quality for the high speed craft (planing craft M-hull) before and after incorporating with stern foil. The reason of this adapting of a stern flap foil is to combine the seakeeping qualities of the vessel with the dynamic effect and higher speed attainable at favourable ship resistance.

1.2 Objective

1. To investigate the effect of stern foil on resistance and seakeeping of M-Hull Planing Craft.

1.3 Scope of Work

1. Literature review on stern foil analysis of M-Hull Planing Craft.

2. To develop a computer program for resistance prediction of M-Hull Planing Craft by using Savitsky and two dimensional methods with effect of stern foil.

3. To perform seakeeping analysis by using an existing computational software Maxsurf SEAKEEPER.

4. To conduct resistance and seakeeping tests with and without stern foil.

1.4 Schedule of the Project

1.4.1 Project I

1. Literature review on resistance and seakeeping behaviour of high speed craft. The study shall begin by determining the characteristic of the parameters of high speed craft in high speed region. The study also expands on the effect of tool for controlling motion in waves which gives a significant effect to the speed of the vessel.

2. The work will be continued with collecting all data and ships particulars including hydrostatic data, drawing and materials for appropriate vessel which is related to research objectives.

3. Perform the theoretical calculation and introduce the Savitsky equation and develop the foil and strut formulation in FORTRAN programming to predict the resistance of effect of stern flap foil on research vessel.

4. Conduct seakeeping simulation by using SEAKEEPER programming in order to predict the motions by effect of stern flap foil.

1.4.2 Project II

1. A model will be constructed at Marine Technology Laboratory, Universiti Teknologi Malaysia UTM.

2. Model test shall be conducted in order to assess the theory of performance of high speed craft against the results from model test. Basically the purposes of this experiment are:

a. To determine the resistance of the vessel with and without stern foil at speed of 25 knots (12.86m/s).

b. To determine the significant effect of motions (heave and pitch) in head sea at design speed with and without stern foil.

c. To confirm that by adapting stern flap foil at transom stern to the motion of the vessel will decrease at vertical acceleration.

3. To perform the performance comparison for research ship between the results of model test and theoretical estimates.

4. The details of methodology being simplified is illustrated in the figure 1.1 (project flow chart) while the detail planning chart for Project I and Project II is in Appendix A.

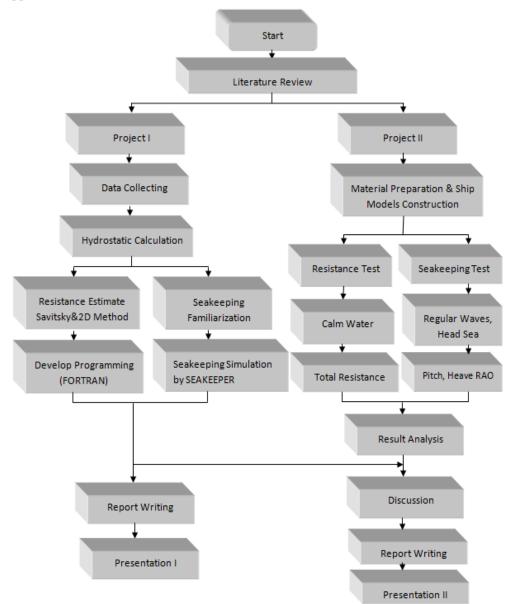


Figure 1.1 : Project Flowchart