DEVELOPING PLC BASED GANTRY ROBOT USING POSITIONING SERVO DRIVE WITH PROFIBUS – DP COMMUNICATION PROTOCOL

YASIR AMZAD ALI BIN MOHD YASEEN

A project report submitted in partial fulfillment of the requirement for the award of the degree of Master of Engineering (Electrical – Mechatronics & Automatic Control)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > NOVEMBER, 2009

Dedicated to my beloved wife Dr Rokiah Binti Khalid Son, Yasir Adham Ali Parents , Janathul Nisa & Mohd Yaseen

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and engineers. They have contributed towards my understanding and thoughts. In particular, I would like to acknowledge and express my sincere appreciation to my main thesis supervisor, Dr Hazlina Selamat, for encouragement, guidance, critics and friendship. His readiness to help and valuable suggestions were highly appreciated towards to meeting the project objective.

My fellow postgraduate students should also be recognized for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. I am grateful to all my family members.

ABSTRACT

PLC (Programmable Logic Controller) is one of the most important device in industrial automation nowadays. PLC is the device which control the machine so that the machine can run fully automatically. PLC is rarely use to control movement of the axis. Usually axis movement will be controlled by CNC (Computer Numeric Controller) machines. But in this Project, PLC is used to control gantry robot with three axis using positioning servo drive and its communicate via PROFIBUS (Process Fieldbus). The reason that PLC used to control the robot is because, PLC based machine is relatively much cheaper compare to machine that use CNC.

ABSTRAK

PLC merupakan salah satu alat yang terpenting dalam bidang automasi industri pada masa kini.PLC merupakan alat yang mengawal mesin untuk berfusngi secara automatik sepenuhnya.PLC jarang digunakan untuk mengawal pergerakan paksi sesuatu mesin.Kebiasanya tugas mengawal paksi ini dilakukan oleh CNC.Tetapi dalam Projek ini , PLC digunakan untuk mengawal pergerakan robot gantri tiga paksi yang digerakkan oleh motor servo dan berkomunkasi mengunakan PROFIBUS. Tujuan mengunakan PLC sebagai alat mengawal ialah kerana mesin yang berlandaskan PLC secara relatifnya adalah lebih murah berbanding dengan mesin yang mengunakan CNC.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	XV

1 INTRODUCTION

1.1	Project Introduction	1
1.2	Project Objective	4
1.3	Scope Of Project	4
1.4	Organization Of Thesis	5

2 LITERATURE REVIEW

2.1	Gantry Robot	6
2.2	Programmable Logic Controller	8
	2.2.1 PLC Introduction	8

	2.2.2	PLC Features	8
	2.2.3	System Scales	9
	2.2.4	User Interface	9
	2.2.5	Communication	10
	2.2.6	PLC Compared With Other Control Systems	10
	2.2.7	Digital and Analogue Signal	12
	2.2.8	Programming Language	13
	2.2.9	Siemens PLC	14
2.3	Profib	us Communication Protocol	16
	2.3.1	Profibus Introduction	16
	2.3.2	Profibus Origin	18
	2.3.3	Advantages Profibus Compare Other Fieldbuses	18
2.4	Servo	Drive	19
	2.4.1	Introduction To Digital Servo Drive	19
	2.4.2	Lenze 9300 Positioning Servo Drive	20

3 PROJECT BACKGROUND

3.1	Previo	ous Control System for ABB Robot	22
3.2	Proble	em with Previous ABB Gantry System	27
	3.2.1	Obsolete Parts	27
	3.2.2	No Local Support Available For Robot	27
	3.2.3	Complicated Control System	28
	3.2.4	Homing In Every Movement	29
	3.2.5	Unnecessary Tray Scanning Process	29
	3.2.6	No Permission Required To Enter Cage	29
	3.2.7	Cannot Run In Manual Loading & Unloading	30
	3.2.8	Robot Don't Have Safety Parking Position	30
	3.2.9	No Proper Indication Of Alarm Or Fault Signal	30

4 METHODOLOGY

4.1 Introduction 31 4.2 Siemens Programmable Logic Controller 32 4.2.1 Siemens PLC Hardware Configuration 32 Siemens Network Configuration 4.2.2 34 4.2.3 Siemens PLC Program Editor 35 4.2.3.1 Siemens S7-Graph Editor 36 4.2.3.2 Siemens Ladder Diagram (LAD) Editor 39 4.2.3.3 Siemens Statement List (STL) Editor 41 4.3 Siemens Human Machine Interface (HMI) 43 4.4 Global Drive Control 45

5 PLC PROGRAM IMPLIMENTATION

5.1	Introduction	46
5.2	Robot Auto Cycle	48
5.3	Machine Ready, Safety and Error Handling Program	54
5.4	Decision Making Program	58
5.5	Drive Control Program	61
5.6	Execution Of FB3 Programs	63

6 HMI IMPLIMENTATION

6.1	Introduction	67
6.2	Main Screen	68
6.3	Auto Cycle Screen	69
6.4	Semi Auto Cycle Screen	74
6.5	Manual Cycle Screen	76
6.6	System Diagnostic Screen	77
6.7	Teaching Mode Screen	78

7 DRIVE IMPLIMENTATION

7.1	Introduction	79
7.2	Drive Parameter Configurations	79
7.3	Position Configuration	81
7.4	Drive Program Editor	82

8 **RESULTS AND DISCUSSION**

8.1	Introd	uction	84
8.2	Devel	opment Stages	85
8.3	Error 1	Recording Program (FC250)	87
8.4	Featur	res Of New Robot Gantry System	88
	8.4.1	Simple And Reliable Control System	88
	8.4.2	Easy Maintenance & Troubleshooting Process	91
	8.4.3	One Touch Button Control Concept	92
	8.4.4	Optimize Movement Concept	92
	8.4.5	Improved Safety	93
	8.4.6	Improved Tray Scanning Process	94
	8.4.7	Variable Speed Control To Improve Process Time	95
	8.4.8	Touch Screen For The Robot	95

9 CONCLUSION AND RECOMMENDATION

9.1	Conclusion	97
9.2	Recommendation	98

REFERENCES

99

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Loading Control System Unit	23
3.2	Unloading Control System Unit	24
3.3	ABB Gantry Robot Control System Unit	25
4.1	List Of Hardware Used For Gantry Robot	33
5.1	Function List For The Robot Auto Cycle Sequence	60

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	Gantry Robot Structure	3
1.2	Loading Station	3
1.3	Unloading Station	4
2.1	Digital Servo Drive	20
3.1	S5 100u CPU	23
3.2	Sanyo Denki Stepper Motor Drive	24
3.3	S5 115u CPU With Input Output Card	25
3.4	Telemeqanique NUM 17.20 CPU	26
3.5	ABB NUM NC Controller Card	26
3.6	BOSH-REXROTH Indramat Servo Drive Axis Module	27
4.1	Hardware Configuration	34
4.2	HMI and PLC Communication Interface	35
4.3	Graph-7 Programs	37
4.4	Robot Programs Written In S7-Graph Language	38
4.5	Ladder Diagram Editor Siemens PLC	40
4.6	Ladder Diagram Editor Siemens PLC	41
4.7	STL Editor Siemens PLC	42
4.8	WinCC Flexible 2008 HMI Screen Editor Software	44
4.9	Global Drive Control Software	46
5.1	Flow Chart For Robot Auto Cycle Control	48
5.2	FC20 Monitoring X & Y Reach Position Function	49
5.3	Tray Status For The Robot	50
5.4	Tray Location For The Robot	51
5.5	Programs Code For Updating Tray Value At Location 10	52
5.6	Sequence Queue List	53

5.7	Current Running FB Highlighted At Screen	53		
5.8	Step Number 10 At FB3			
5.9	Safety And Error Programs Control's Flow Chart			
5.10	Error Message For Emergency Button And Safety Door			
5.11	Ladder Diagram Check Machine Emergency			
5.12	Ladder Diagram Check Main Air Pressure			
5.13	Machine Ready Condition Displayed At Screen			
5.14	Flow Chart Of Decision Making Program			
5.15	Profibus Control Program For X-Axis			
5.16	Flow Chart For Drive Control Programs			
5.17	Error Message Related Drives At Touch Screen			
5.18	Ladder Diagram Check Priority For FB3	64		
5.19	Flow Chart FB3 Functions	66		
6.1	Main Screen	68		
6.2	Auto Cycle Screen	69		
6.3	Actual Position And Speed Value	70		
6.4	Tray Status	70		
6.5	Start Button Hidden	71		
6.6	Start Button Displayed	71		
6.7	Machine Ready Status			
6,8	Sequence Status			
6.9	Set Axis Speed Parameter			
6.10	Set Maximum Tray Value			
6.11	Semi Auto Cycle Screen			
6.12	Semi Auto Mode Go To Location			
6.13	Semi Auto Part Program			
6.14	Manual Cycle Screen			
6.15	System Diagnostic Screen			
6.16	Teaching Mode Screen	78		
7.1	Motor Data Parameter	80		
7.2	Position Configuration	81		
7.3	FB Editor Software			
7.4	Program Process List For Drive			
8.1	Gantry Robot In Operation	85		

8.2	Screen Used For Control Robot Movement	86
8.3	Screen Used To Test Auto Cycle Movement	86
8.4	Error Recording Program	87
8.5	Siemens 10" Touch Screen For Gantry Robot	90
8.6	Siemens S7-317-2DP CPU	90
8.7	Lenze 9300 Positioning Servo Drives	91
8.8	Safety Relay Used For The Project	94
9.1	Keyence Imaging Device	98

LIST OF ABBREVIATIONS

PLC	-	Programmable Logic Controller
NC	-	Numeric Controller
PWM	-	Pulse Width Modulation
CPU	-	Central Processing Unit
ΙΟ	-	Input Output
MS-DOS	-	Microsoft Disk Operating System
MTC	-	Machine Tool Control
DP	-	Distributed Peripheral
USB	-	Universal Serial Bus
PROFIBUS	-	Process Field Bus System
HMI	-	Human Machine Interface
PA	-	Process Automation

CHAPTER 1

INTRODUCTION

1.1 Project Introduction

SKF Bearing Industries Sdn Bhd is world-class manufacturer of bearings employing the most modern technology in the industry. Plant is located in Nilai and supplies the world with quality bearings.

In order to manufacture Cylindrical Roller Bearing (SRB), heat treatment process for the roller is one of the crucial and importance process. Every minute thousands of rollers need to supply to the furnace to undergo heat treatment process.

To supply the roller for the furnace, SKF Nilai is using fully automated gantry robot loading system. There is three major component of the gantry system. First system is loading station. In loading station the roller is sorted at the tray and then it will be transported to the furnace by robot. Robot will arrange the tray at pallet in several layers before deliver the pallet into furnace. Second system is unloading system. After the roller finished heat treatment process, robot will unload the pallet from furnace and deliver the tray to unloading station. Unloading station will distribute the roller for grinding process.

Previous gantry robot system is using ABB automation control design. This robot's design is outdated & not efficient in this new era. The ABB robot is using CNC controller and using three separate PLCs to control loading and unloading station.

The idea is to replace old fashion of automation control to new, fast, reliable, user friendly, easy to troubleshoot & easy to maintain gantry robot automation system.

This project is to upgrade the old gantry robot system to cheap & reliable robot control system using PLC control system. After I had done some research and studies, I had found out the simplest & much reliable robot design using PLC & positioning servo drive.

Another aspect which was given high priority before design the system is availability of spare part in our store & local support of the device that we use. Almost 70% of the items include (PLC CPU, Input Output Card, Communication Card, Touch Screen) is available in our spare part store. This will drastically reduce downtime for robot due to availability of spare parts.

Figure 1.1 : Gantry Robot Structure

Figure 1.2 : Loading Station

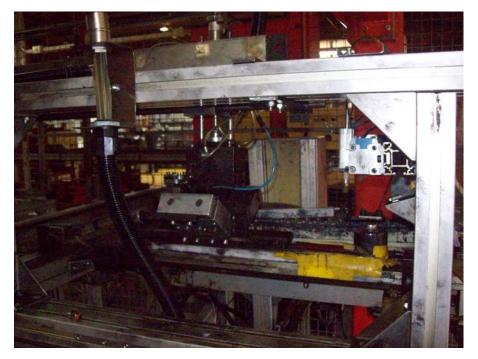


Figure 1.3 : Unloading Station

1.2 Project Objective

Project objective is to develop complete control system for 3 axis gantry robot using Siemens s7 PLC, Lenze positioning servo drive, Siemens touch screen and these devises is communicate via Profibus - DP protocol.

1.3 Scope Of Project

In order to achieve the objective of the project, there are several scope had been outlined. The scope of this project includes writing PLC software using Siemens Step 7 software, writing and designing HMI program Siemens WinCC Flexible 2008 and configuring and writing Lenze drive program Global Positioning Drive software.

1.4 Organization of Thesis

This thesis consists of eight chapters. Chapter 1 provides preliminaries studies on the current scenarios of this project. In Chapter 2, literatures on devices and technology that used in this project will be discussed briefly.

Chapter 3 describes and briefs the theoretical background of the project. In this chapter, will discussed comparison between previous robot system and future robot system will be discussed.

Chapter 4 will discuss methodology that used in order to complete these projects. In this chapter, software and hardware that used for the projects will be discussed briefly. Meanwhile in Chapter 5, PLC program implementation will be discussed. This chapter will go thorough entire function that developed in order to complete this project.

Chapter 6 will discuss about HMI implementation. In this chapter HMI design and development will be discussed. Chapters 7 will focus on drive implementation. In this chapter drive configuration and programming will be discussed briefly.

Chapter 8 will discuss results and discussion regarding this project and finally Chapter 9 is conclusion and recommendations.

REFERENCES

- Erickson, K. T. (2005). Programmable Logic Controllers: An emphasis on design and application. Dogwood Valley Press, LLC, 1604 Lincoln Lane Rolla, MO, USA.
- 2. Bolton, w., *Programmable Logic Controllers: An Introduction*, Butterworth-Heinemann, 1997
- 3. Clements-Jewery, K., Jeffcoat, W., *The PLC Workbook; Programmable Logic Controllers made easy*, Prentice Hall, 1996.
- 4. Siemens AG. S7-400 and m7-400 programmable controllers hardware and installation., September 2004. URL http://www.siemens.co.jp/simatic/japan/as/plc/data/400/424ish_e.pdf.
- Fieldbus technology, June 2009. URL <u>http://murray.newcastle.edu.au/users/students/1999/c9518176/fieldbuste</u>
- Profibus profibus & profinet., June 2009. URL http://www.profibus.com/profibus.html.
- Lenze Drive Configuration Manual , June 2009 .URL
 <u>http://www.lenze.com/lenze.com en active/040 Services/060 Application</u>
 <u>Knowledge Base/Application Knowledge Base.com.jsp?cid=0b0164e0800</u>
 <u>91546</u>