OPEN SOURCE FORENSIC TOOLS FOR LINUX HARD DISK INVESTIGATION

BASHAR (MOH'D WALID) AMIN MAREE

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Computer Science (Information Security)

Faculty of Computer Science and Information Systems Universiti Teknologi Malaysia

APRIL 2010

ABSTRACT

As the adoption of the Linux operating system is continually increasing there is a need to document the procedures for forensically examining its hard disk, which is arguably the most valuable source of criminal evidence in a computer system. The presently available material can be described as being too technical, scattered and in some instances outdated. This project aims to highlight the procedures needed to forensically investigate a Linux hard disk using open source tools. Current guidelines have been reviewed in an attempt to extract focal areas that need attention in terms of forensic investigation. The adopted methodology, in this project, consisted of compiling a series of experiments using various open source tools to demonstrate the stages of a complete hard disk digital investigation. The flow of the experiments exhibited the basic concepts needed for understanding volume and file system investigation on a Linux system. The main forensic stages that were covered are the preparation, imaging, volume analysis and file system analysis stages. Additionally the work also exhibited the feasibility of using open source forensic technology. The outcome of this project was a set of clearly defined procedures for the purpose of facilitating the task of a forensic practitioner to digitally investigate a Linux environment. It demonstrated the use of open source forensic methods using the most recent Linux platform at the time of writing. The main advantage of such an approach is its potential to be academically verified and improved and possibly to be eventually adopted in law enforcement agencies. Moreover, it enables unrestricted control of code and development rights of a highly needed security technology without the constraints of a commercially driven market.

ABSTRAK

Penggunaan sistem Linux pengoperasian kebelakangan in semakin bertambah dan sangat perlu untuk menyediakan prosedur bagi menganalisis cakera keras secara forensik. Cakera keras adalah satu sistem komputer yang penting yang boleh memberi maklumat mengenai bukti-bukti jenayah dalam sistem komputer. Prosedur yang melibatkan analisis secara forensik yang digunapakai pada hari ini bagaimanapun terlalu teknikal, sukar untuk dicari secara khusus dan kadang-kadang sudah lapuk. Projek ini bertujuan untuk memberi pengenalan kepada prosedur baru yang diperlukan untuk menyelidik cakera keras Linux secara forensik dengan menggunakan alat open source tools. Bagi memenuhi matlamat tersebut, panduan terkini telah dirujuk dan dinilaikan untuk mengenalpasti aspek-aspek penting yang memerlukan pemerhatian terperinci dalam siasatan forensik. Metodologi untuk projek ini ialah dengan menghimpun rangkaian eksperimen menggunakan pelbagai alat open source bagi menunjukkan siri-siri siasatan digital cakera keras yang lengkap. Rangkaian eksperimen yang digunapakai ini memperlihatkan konsep asas untuk memahami isipadu dan sistem fail dalam sistem Linux. Ciri-ciri forensik utama dalam siasatan forensik ini adalah dari segi penyediaan, pengimejan, analisis isipadu dan analisis sistem fail. Selain daripada itu, rangkaian eksperimen yang digunakan ini juga menunjukkan kebolehlaksanaan dan kemunasabahan teknologi forensik. Hasil daripada projek ini ialah satu prosedur yang sangat jelas untuk memudahkan tugas-tugas ahli forensik membuat siasatan terhadap persekitaran Linux secara digital. Prosedur baru ini juga menunjukkan penggunaan alat forensik open source tools menggunakan platform Linux yang terkini. Kelebihan utama daripada pengunaan alat forensik open source tools ini ialah potensinya bagi tujuan pengesahan dan pembaikan secara ilmiah dan boleh digunapakai oleh agensi penguatkuasaan undang-undang. Selain itu, ia juga memberi kelebihan terhadap pengunaan kod tanpa had dan hak mencipta teknologi sekuriti yang amat diperlukan ketika ini tanpa kawalan pasaran yang bersifat komersil.

TABLE OF CONTENTS

CHAPTER	TITLE		PAGE
	DE	ii	
	AB	STRACT	iii
	AB	STRAK	iv
	TA	BLE OF CONTENTS	v
	LIS	ST OF TABLES	viii
	LIS	ST OF FIGURES	ix
	LIS	ST OF ABBREVIATIONS	xiv
	LIS	ST OF APPENDICES	XV
1	INT	RODUCTION	1
	1.1	Preface	1
	1.2	Digital Forensics	2
	1.3	Linux	2
	1.4	Forensic Role of the Hard Disk	4
	1.5	The Problem Background	4
	1.6	Objectives	5
	1.7	Scope	6
	1.8	Project Aim	7
	1.9	Requirements	7
2	LIT	ERATURE REVIEW	9
	2.1	Hard Disks	9
	2.2	Device and Partition Names	10
		2.2.1 Cryptographic Hashes	11
	2.3	Imaging	11

2.4	Data Layers11		
2.5	Device Files		
2.6	Unused Disk Areas		
2.7	Host Pro	otected Area	15
2.8	The Exte	ended File System	16
2.9	Existing	Guidelines	18
	2.9.1	Guide to Integrating Forensic Techniques into	
		Incident response	19
	2.9.2	Forensic Examination of Digital Evidence:	
		A Guide for First Responders, Second Edition	20
	2.9.3	Forensic Examination of Digital Evidence:	
		A Guide for Law Enforcement	21
	2.9.4	Good Practice Guide for Computer-Based	
		Electronic Evidence v4	22
	2.9.5	New Technologies Incorporated, Computer	
		Evidence Processing Steps	23
	2.9.6	Computer Security Incident Handling Guide	24
	2.9.7	SWGDE Guidelines	25
2.10	Linux F	orensic Tools	26
	2.10.1	General Command Line Utilities	26
	2.10.2	The gparted Command	28
	2.10.3	The hdparm Command	28
	2.10.4	The badblocks Command	28
	2.10.5	The dd Command	28
	2.10.6	The fdisk Command	29
	2.10.7	The mawk Command	30
	2.10.8	The md5sum, sha1sum and sha256sum Commands	30
	2.10.9	The grep Command	31
	2.10.10	The find Command	32
	2.10.11	The ls Command	32
2.11	The Sleu	th Kit Tools	32
	2.11.1	Non-categorized Tools	33
	2.11.2	The File System Layer	34

		2.11.3 The Content Layer Tools	34
		2.11.4 The Metadata Layer Tools	35
		2.11.5 The File Name Layer Tools	36
		2.11.6 The Application Layer Tools	36
		2.11.7 The sigfind Tool	37
	2.12	Caine Live Cd	37
3	RES	EARCH METHODOLOGY	38
	3.1	Topic Material	38
	3.2	The Experiments	39
	3.3	The Procedures	39
4	IMP	LEMENTATION	41
	4.1	Forensic Machine Preparation	41
	4.2	Listing Contents	41
	4.3	Hardware Integrity	44
	4.4	Wiping Storage Media	45
	4.5	Imaging and Verifying	48
	4.6	Searching and Verifying	49
	4.7	Loopback Device	51
	4.8	String Searches	57
	4.9	Determining File Types	59
	4.10	Searching Raw Images for Text	61
	4.11	Displaying Hard Disk Information	63
	4.12	Setting the HPA	65
	4.13	The sorter Tool	68
	4.14	Data Carving	70
		4.14.1 File Signatures	70
		4.14.2 Conversion Calculator	71
		4.14.3 Carving	72
	4.15	Browsing the Image for Deleted files	76
	4.16	Physical Level Search	84
	4.17	Extracting Unallocated Data from File Systems	91

	4.18	Finding	g Signatures in Unallocated Blocks	95
5	CO	NCLUSI	ON	102
	5.1	Linux 1	Investigation Procedures	102
		5.1.1	Preparation Stage	102
		5.1.2	Duplication Stage	103
		5.1.3	Volume Analysis Stage	105
		5.1.4	File System Analysis Stage	105
	5.2	Contrib	oution	108
	5.3	Limitat	tions and Future Work	110
REFEREN	ICES			112

Appendices A – E	115 - 120
rr · · · ·	

LIST OF TABLES

TABLE NO). TITLE	PAGE
2.1	Linux device and partition names	11
2.2	General Linux commands used in the forensic experiments	26
2.3	Common fdisk options	29
2.4	Examples of typical mawk command statements	30
2.5	Common grep syntax	31
2.6	Some TSK tools listed by category	33
2.7	TSK tools that are not categorized	34
2.8	TSK Content Layer Tools	35
2.9	TSK Metadata Layer Tools	35
2.10	TSK File Name Layer Tools	36
4.1	Basic options of the ls command	43
4.2	Useful options for grep	59

LIST OF FIGURES

FIGURE N	O. TITLE	PAGE
1.1	Layers of analysis based on design of digital data	7
2.1	Physical components of a hard disk	10
2.2	Flow of investigation from the device till the application layer	14
2.3	Host Protected Area on a 20 GB hard disk	16
2.4	Layout of block groups in an Ext file system	17
2.5	Block group structure	18
2.6	Allocation links between different layers	18
3.1	Work flow of the project	40
4.1	Directory view in the file browser	42
4.2	Using ls to list hidden files	42
4.3	Recursive listing	43
4.4	Depicting the hierarchy using tree	44
4.5	Bad blocks checking in progress	44
4.6	Completed badblocks check	45
4.7	Checking the first hard disk with gparted	46
4.8	Checking the second hard disk with gparted	46
4.9	Confirming the results with fdisk	46
4.10	Command for piping the hex dump to be viewed	47
4.11	Viewing the hex dump of /dev/sdb	47
4.12	Using dd for wiping with zeros	48
4.13	Confirming the result with xxd	48
4.14	Checking the md5 checksum of /dev/sdc	48
4.15	Imaging /dev/sdc and verifying the integrity of the image file	49
4.16	Finding regular files and calculating their hashes	50
4.17	Saving the hash values by redirecting them to a file	51

4.18	Successful confirmation of matching hash values	51
4.19	Detection of the modified file	51
4.20	find mismatch notification	51
4.21	Calculating sha1 checksum for /dev/sdc	52
4.22	Using fdisk on /dev/sdc to get partition information	53
4.23	Imaging the sdc device in 2 ways and comparing the hashes	54
4.24	The hash value of /dev/sdc has not changed	54
4.25	Creating the /mnt/CaseViewer directory	54
4.26	Mounting the image with loopback device and browsing	55
4.27	Navigation of the hidden directories till a hidden file is found	56
4.28	Unmounting the raw image	56
4.29	The hash values after mounting	57
4.30	Lines matching the pattern keyword returned by grep	57
4.31	Using a text file for the source of patterns	58
4.32	Determining actual file types	59
4.33	Determining partition file system type with file	60
4.34	File failed to identify the partitions or the device directly	60
4.35	Reading the fstab contents for /dev/sda	61
4.36	The image is viewed then deleted on /dev/sda4	62
4.37	The suspect partition is imaged with dd	62
4.38	Using grep for the keyword search	62
4.39	Using xxd to make a dump of the text around the offset	62
4.40	The entire message is found	63
4.41	The hdparm output for /dev/sda	64
4.42	The hdparm output for /dev/sdc	64
4.43	Checking the presence of an HPA	65
4.44	Temporary setting of the HPA	66
4.45	HPA is temporarily set on /dev/sdd	66
4.46	Disk status after restart	66
4.47	Permanent setting of the HPA	67
4.48	HPA is set on /dev/sdd	67
4.49	Imaging in the presence of an HPA and the ensuing error	67
4.50	Creating the sorter directory	68

4.51	Listing of the files to be sorted	69
4.52	The sorter command syntax	69
4.53	Results saved in the output directory	70
4.54	Using xxd to read the image header	71
4.55	The camera brand is embedded in the header	71
4.56	Using the bc calculator	72
4.57	An image and a pdf file saved on to the partition	73
4.58	Imaging the partition with dd	73
4.59	Converting the header and footer into hexadecimal	74
4.60	A hit is found by grep	74
4.61	Converting the header offset to decimal	74
4.62	The footer offset is also found	75
4.63	Converting the footer offset to decimal	75
4.64	Calculating the length of the pdf file	75
4.65	Copying the pdf from the raw file	75
4.66	The pdf file is restored	76
4.67	Directory containing images	77
4.68	Copying recursively	77
4.69	Imaging the partition	78
4.70	Viewing the image contents with fls	78
4.71	Deleting the food sub-directory	78
4.72	Deleting two more images	79
4.73	The alps image is moved out of the directory	79
4.74	Each deleted item is marked by an asterisk	79
4.75	Using istat to obtain inode information	80
4.76	Creating a small file and imaging again	80
4.77	Viewing testfile with fls	81
4.78	Same result with the smaller file	81
4.79	Browsing directory 116016 using fls	82
4.80	Using istat to get inode 116020 information	82
4.81	Using ffind to view names associated with inode 116020	83
4.82	Using icat to retrieve the file contents	83
4.83	Deleted image retrieved	84

4.84	Viewing the image and deleting it	85
4.85	Using fdisk to determine the partition layout on /dev/sdd	86
4.86	Using mmls to determine the partition layout on /dev/sdd	86
4.87	Imaging the active partitions on the device	87
4.88	grep fails to detect the keyword on the whole disk	87
4.89	Imaging /dev/sdd8 and the finding the keyword using grep	87
4.90	Offset sector of partition /dev/sdd8	88
4.91	The fsstat tool used on the whole image	88
4.92	The block size from fsstat	89
4.93	Using blkstat to find the allocation status of the block	89
4.94	Using ffind to find the inode associated with the block 6657	89
4.95	Using istat to get the inode information	90
4.96	The deleted message is revealed	90
4.97	The output of fdisk from /dev/sdc	91
4.98	The output of fdisk from the image	91
4.99	The blkls extraction and the grep search	92
4.100	The fsstat command	93
4.101	The block size on /dev/sdc8	93
4.102	The block number calculations	93
4.103	Finding the actual block address and allocation confirmation	94
4.104	Using blkcat to display the block content	94
4.105	The deleted message has been retrieved	95
4.106	Obtaining partition information using fdisk	96
4.107	Copying an image into /dev/sdd8 and removing it	96
4.108	Imaging the partitions without the volume slack	96
4.109	Layout is reported unchanged by mmls	97
4.110	Extracting the unallocated blocks using blkls	97
4.111	The hexadecimal value of JFIF	97
4.112	The offset to a jpg signature is 6 bytes	98
4.113	Using fsstat with less to control the output	98
4.114	Block size of /dev/sdd8	98
4.115	Using sigfind to locate the header signature	99
4.116	Using blkcalc to figure the block address on the original partition	99

4.117	The original inode is found using ifind	99
4.118	The file name could not be retrieved using ffind	100
4.119	The icat output is saved and file is used to determine the file type	100
4.120	Using eog to attempt to open the file	100
4.121	The deleted image revealed	101
5.1	The imaging process chart	104
5.2	Image browsing techniques	106
5.3	Conducting a physical search	107
5.4	Conducting searches in unallocated space	108

LIST OF ABBREVIATIONS

AFF	-	Advanced forensic format
BIOS	-	Basic input/output system
BTRFS	-	B-tree file system
CCTV	-	Closed-circuit television
CD	-	Compact disk
Ext2	-	The second extended file system
Ext3	-	The third extended file system
Ext4	-	The fourth extended file system
FAQ	-	Frequently asked questions
GPS	-	Global positioning system
HPA	-	Host protected area
JPEG	-	Joint photographic experts group
MBR	-	Master boot record
MD5	-	Message-digest algorithm 5
NIST	-	National institute of standards and technology
NTI	-	New Technologies Incorporated
OS		Operating System
PDA	-	Personal digital assistant
PDF	-	Portable document format
RAID	-	Redundant array of independent disks
RAM	-	Random access memory
SHA1	-	Secure hash algorithm 1
SHA256	-	Secure hash algorithm 256
SOP	-	Standard Operating Procedure
SWGDE	-	Scientific working group on digital evidence
TSK	-	The Sleuth Kit

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Disabling 3D visual effects on the forensic platform	115
В	Installation of gparted on Ubuntu	116
С	Mounting a partition using the GUI on Ubuntu	117
D	Hard Disk Manufacturer's Labels	118
E	Sorter HTML files	119

CHAPTER 1

INTRODUCTION

This chapter will give an overview of the problem statement that lead to this project. It will also set the course of work by defining the objectives and scope.

1.1 Preface

There is increasing dependance on utilizing digital technology to perform daily activities. Despite their popularity, computers by virtue of their design have a very complicated structure. These powerful devices went through decades of development for the purpose of making them usable for the nonspecialist. Layer after layer of abstraction has been added to their functionally in order to hide the complexity that lies within. Consequently, many people are not aware of the inner workings of these devices that they heavily rely upon.

Computers are often used as a tool to commit or facilitate crime. Ironically this is meant to do away with conventional methods of record keeping. Notepads can easily be lost and become valuable evidence in legal proceedings. Electronic gadgets are seen to be more discreet in regards to their contents. In reality, this is merely a misconception. Computing devices are capable of maintaining traces of their usage as much as, if not more than, physical fingerprints and DNA.

1.2 Digital Forensics

Digital or computer forensics is a relatively new field under computer science (Jones and Valli, 2009). The drive behind its recent popularity is mainly the global adoption of digital technologies.

"Computer forensics involves the preservation, identification, extraction, documentation and interpretation of computer media for evidentiary and/or root cause analysis".

(Kruse and Heiser, 2002:1)

The science of computer forensics is concerned with understanding the core functionality of software and hardware for the purpose of tracking the flow of data, of evidentiary value, within these systems. Any software or hardware that could be used as part of an end user computational platform is subject to forensic scientific inquiry. Research in this field might occasionally give popular platforms priority but this is not to be taken as a limiting boundary.

1.3 Linux

Linux is an open source operating system that was initially coded in 1991. According to Shelly and Vermaat (2009), Linux is one of the faster growing operating systems.

"Over the past years, Linux has grown from an operating system used primarily by computer techies who disliked Microsoft to a widely accepted operating system with strong support from mainstream companies, such as IBM, HP, Dell and Novell"

(Morley, 2008:209).

"Oracle database 11g was developed on the Linux platform, and that's why the Linux based version was the first to be released for production use. Oracle has certified and supports Red Hat Enterprise Linux AS and ES (either the 4.0 or the 5.0 version), SUSE LINUX Enterprise Server 10, Asianux 2 and 3, and the Enterprise Linux versions 4 and 5."

(Alapati, 2008:44)

Even as a personal operating system, Linux has achieved huge visibility. Currently IBM, Intel and Oracle are amongst the top ten contributors to the Linux Kernel (The Linux Foundation, 2009). The following are some market indicators on the increasing popularity of this platform:

- In France, the French Parliament (Guillemin, 2006) and the National Police Force (Paul, 2009a) have migrated to Ubuntu Linux. The latter's complete migration covering 90.000 workstations is planned to finish by 2015.
- The Andalusian Regional Government, Spain, has implemented 220,000 Ubuntu-based workstations in more than 2,000 schools throughout the region (Canonical Ltd., 2009).
- 3. Wikimedia, the organization behind the Wikipedia site runs Ubuntu exclusively on all of its 300 plus servers (Paul, 2008).
- 4. Amazon the online seller runs entirely on Linux (Shankland, 2004).
- 5. The Chicago Mercantile Exchange, an American financial and commodity derivative exchange uses Linux entirely on all its platforms (Paul, 2009b).

A thorough examination of these points will reveal a clear indication that the Linux user base is likely going to expand. Current market share is vaguely estimated to be somewhere in the range of one to two percent. The adoption examples given above can point to the growth rate. Numerous other examples exist but normally these aren't officially announced in a measurable manner. These transitions are ordinary measures in IT departments and hardly necessitate the intervention of the media. Nevertheless unofficial growth rate estimates are between fifty to a hundred percent annually. This expectation carries the possibility of substantial market presence within a few years.

For an operating system to be of forensic value, it should provide a few capabilities. The following list gives some of these capabilities that were originally stated by Mandia (2003):

- Supports a wide variety of file systems.
- Recovers file slack and unallocated space.
- Provides an efficient, effective and accurate undelete utility.
- Provides keyword search capabilities.
- Performs all functions in a read-only state on the file system being processed.
- Provides extensive auditing and logging of all forensic activities.
- Provides for data validation and integrity.

1.4 Forensic Role of the Hard Disk

As stated earlier, the arsenal of forensic practitioners should include all the necessary skills and tools to counter any forensic situation. This includes the ability to deal with all types of operating systems, software, hardware and hardware configurations such as RAID, clusters and server setups.

Personal computers and laptops are clearly two of the most widely used computer equipment. In these devices, the hard disk is the most valuable component for a forensic investigation. The reason is that this component is, generally, where most evidence can be found.

1.5 The Problem Background

As stated earlier forensic science is a field that is constantly developing in order to cover the many domains which the information technology industry is producing. This growth in addition to the increase of complexity in both hardware and software will eventually lead to the emergence of specializations within this field. Specialization is a strategy for dealing with complexity. Not only does it minimize the required analytical load on individuals but it can also improve the quality of their work. This also applies to the forensic science and practice. As a matter of fact, this trend has already started to emerge in the forensic practice. For example, it is noticeable that commercial forensic services providers usually have teams with each member specializing in a certain field within this domain such as storage devices, network and RAM. In fact, expensive professionals such as RAM analysis experts are usually outsourced when necessary and not employed. Some of the interesting and newly emerging specializations include satellite forensics, GPS forensics and even pdf document forensics.

The move towards specialization is also apparent in publications of some of the most prominent standardization bodies in the field. The National Institute of Standards and Technology, for example, has a guideline on PDA forensics. The Scientific Working Group on Digital Evidence has a guideline for peer to peer file sharing technologies. Nevertheless, despite the importance of guidelines in educating forensic practitioners and also maintaining quality at the workspace a recognized publication for dealing, specifically, with a hard disk of a Linux installation does not seem to exist. Reasons for this may include the rarity of finding such a device but the above mentioned indicators seem to show that this is not likely to remain the situation for long.

1.6 Objectives

The project has the following objectives:

1. To review the existing official guidelines that relate to a forensic hard disk investigation.

- 2. To demonstrate the use of tools that are needed to perform the investigative processes using the latest Ubuntu Linux distribution as a forensic platform and as a target platform.
- 3. To outline the general procedures for the hard disk investigation of a Linux target system utilizing the introduced tools.

1.7 Scope

This project basically revolves around the forensic handling of hard disk that has a Linux operating system installed. It focuses on data searches and extraction. The practical examples and experiments given will all be run on the Ubuntu Linux distribution as a target system in a postmortem analysis. Ubuntu Linux will also be the forensic platform that is mostly used. Details of live acquisitions will not be discussed. The procedures will be restricted to the use of open source tools either from the core Linux utilities or separate specialized tools. Legal issues will not be dealt with as a primary focus but might be mentioned if a procedure has very direct implications on the legal value of evidence. The focus is mainly on the volume and file system levels. Application level data such as specific application formats, SWAP and database data will not be dealt with. RAM and network forensics lie out of the scope of this project.

The main focus is on extraction techniques. Therefore, high level analysis components such as allocation strategies and event reconstruction will not be covered.

The following figure is from Carrier (2005). It very clearly depicts the areas of forensic digital investigation. Based on this diagram, the focus in this project will be on volumes and file systems only.

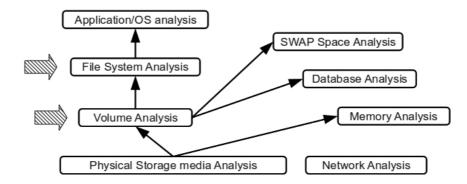


Figure 1.1 Layers of analysis based on design of digital data

1.8 Project Aim

The aim of this project, eventually, is to set the path for standardizing forensic examinations of Linux systems. This might be the future development of guidelines and SOPs that facilitate the task of a forensic practitioner when investigating a hard disk of a Linux operating system.

The tools used in this work are not the most sophisticated. In fact, most of the used tools are simple single task applications. The purpose of using such tools is to gain a better understanding of the underlying concepts rather than just accomplishing a certain task. A deeper understanding of the core principals of digital forensics will always be a merit for the digital investigator. Moreover, the project aims at having some academic value that might promote further research on the topic. Highly skilled forensic practitioners are not simply end users of sophisticated software but rather fully comprehend the fundamentals of computer functionality in regards to their domain.

1.9 Requirements

The experiments for this project were conducted on one dedicated personal computer with the following specifications:

- Intel Pentium(R) Dual-Core Processor E5200 with 2.5 GHz frequency and 2 MB L2 Cache.
- 2. Intel DG35EC motherboard.
- 3. 4 GB DDR2 RAM.
- 4. 2 Western Digital hard disks 320 GB on /dev/sda and /dev/sdb. The /sda was where the forensic platforms were installed. The former was a storage space of the forensic images.
- 5. 2 Maxtor hard disks 40 GB on /dev/sdc and /dev/sdd. These hard disks were used to install the target operating system that were forensically investigated.
- All installations for the forensic platforms and the target machines were Ubuntu Linux 9.10 amd-64 bit versions. The file systems were either Ext2 or Ext3 depending on the experiment.