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ABSTRACT 

 
 
 
 

 Due to their reliability and accuracy, many modern diagnostics based on 

dielectric voltage response, such as polarization/depolarization current (PDC), 

voltage decay (VD) and return voltage (RV) measurements, have been used in 

monitoring ageing processes of metal oxide (MO) varistors.  Among these 

diagnostics, recently, RV measurement (RVM) seems to be an increasingly popular 

method as it has high sensitivity to the condition of varistors and low sensitivity to 

disturbances in vicinity of the field measurements.  Nonetheless, the basic 

interpretation based on the RVM essential parameters – peak RV, time-to-peak RV 

and initial slope of RV - provides insufficient information of the MO varistors 

condition since they are inevitably dependent on the measuring parameters such as 

the charging and discharging times as well as the test object temperature.  Hence, this 

project focuses on a new way in interpreting the RVM parameters based on dielectric 

time constants analysis using an equivalent circuit of varistor microstructure, namely 

the Maxwell-Model.  In order to investigate the ageing processes of MO varistors, 

two types of accelerated degradation techniques – impulse and heat degradations – 

are systematically conducted on test samples.  Experimental results are presented and 

discussed in detail according to the underlying physical mechanism.  On the basis of 

this concept, a sensible ageing parameter, p-factor, is used for better characterization 

of the ageing status of varistors.  
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ABSTRAK 

 
 
 
 

 Disebabkan oleh keboleharapan dan ketepatannya, banyak diagnostik moden 

berdasarkan pada respon voltan dalam dielektrik, seperti pengukuran 

pengutuban/penyahkutuban arus (PDC), voltan penyusutan (VD) dan voltan balikan 

(RV), telah digunakan dalam proses pemantauan penuaan varistor oksida logam 

(MO).  Di antara diagnostic-diagnostik ini, kini, pengukuran RV (RVM) semakin 

meningkat digunakan kerana mempunyai kepekaan yang tinggi terhadap keadaan 

varistor dan sensitiviti rendah terhadap gangguan persekitaran proses pengukuran.  

Walaubagaimanapun, penguraian asas berdasarkan pembolehubah penting RVM - 

puncak RV, masa-ke-puncak RV dan kecerunan awal RV - tidak memberi maklumat 

yang cukup tentang keadaan varistor MO kerana ia bergantung pada parameter 

pengukuran seperti tempoh pengecasan and penyahcasan serta suhu objek.  Oleh 

kerana itu, projek ini fokus pada cara baru dalam mengurai pembolehubah RVM 

berdasarkan analisis pemalar dielektrik masa dengan menggunakan litar yang sesuai 

untuk varistor mikrostruktur - Maxwell-Model.  Dalam proses untuk menyiasat 

penuaan varistor MO, dua jenis teknik penuaan – secara aplikasi dedenyut dan 

pemanasan - dilakukan secara sistematik pada sampel.  Keputusan eksperimen 

tersebut dilaporkan dan dibincangkan secara terperinci sesuai dengan mekanisma 

fizikal yang memdalam.  Atas dasar konsep ini, pembolehubah yang sesuai, p-faktor, 

digunakan untuk menggambarkan dengan lebih baik status penuaan varistor.  
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Project Background 

 
 

 Surge protection devices are often used to protect power and electronic 

equipment from the destructive transient overvoltage from lightning or other large-

magnitude surge.  These devices are used to limit the overvoltage to a level which is 

sufficiently safe for the equipment being protected by diverting the large current to 

ground.  The non-linearity characteristics of these devices depend on their material 

composition.  One type of non-linear devices is known as metal oxide varistor 

(MOV).  MOV is a ceramic device with highly non-linear electrical characteristics; 

similar to those of a back-to-back diode, and has been used for low voltage 

application (below 1 kV).  For higher voltage application that is above 1 kV the 

protection device is usually known as metal oxide surge arrester (MOSA) which may 

consists of several MOV blocks.  Due to its high nonlinear characteristics, these 

devices have high energy absorption capability which is a good characteristic for an 

overvoltage suppressor.  

 
 

 However, these nonlinear characteristics can be degraded by the effects of 

electrical and thermal stresses as well as chemical reactions with the surrounding 

material.  Usually, the thermal stress is considered as effect due to the temperature 

rise of the metal oxide materials subsequent to the discharge of high energy surges.  

While, the electrical stress may be the effects of voltage stress by its own operating 
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voltage at ambient temperature or by high current stress due to overvoltages 

occurrence. 

 
 

In the past, many investigations of several non-destructive diagnostic 

techniques have been conducted for reliable condition assessment of the ageing of 

MOSA.  These diagnostic techniques include the standard 1mA reference voltage, 

lightning impulse discharge residual voltage, voltage decay (VD), polarization or 

depolarization current (PDC) and Return Voltage (RV) measurements. The modern 

diagnostic techniques based on dielectric response such as VD, PDC and RV 

measurements, have also been used to evaluate insulating materials such as cables 

and transformers [1-4].  

 
 

Among these modern diagnostic techniques, recently, the return voltage 

measurement (RVM) seems to be increasingly used as a reliable diagnostic method 

in monitoring the ageing process of the metal oxide materials due to its high 

sensitivity to smaller degrees of degradation [5].  In addition, RVM has low 

sensitivity to disturbances by external noise, a situation that is auspicious for in-field 

measurements [6].  

 
 
 
 
1.2 Problem Statement 

 
 
 RVM method is a good approach to attain the information of insulating 

components condition for devices such as ZnO varistor (under normal operating 

mode).  Due to less sensitive to disturbances, the measurements are reliable and also 

reproducible, at least with regard to the collection of the data.  Unfortunately, in the 

past, not all RVM interpretation methods suggest correct insulation components 

condition information because of unreliable diagnosis parameters and inaccurate 

RVM data interpretation approach.  Hence, this project focus on investigation of an 

accurate and correct way to interpret RVM data of ZnO varistor in order to obtain 

real physical condition of the ZnO insulation. 
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1.3 Objective of Project 

 
 
There are two main objectives that have been achieved in this project: 

 To model the equivalent circuit of ZnO varistor according to RVM 

phenomenon using Maxwell multilayer dielectric circuit. 

 To investigate reliable interpretation of ZnO degradation process using 

RVM method. 

 
 
 
 
1.4 Scope of Project 

 
 
The main scope of this project is to study the diagnostic tecnique of ZnO 

varistor based on RVM method which includes: 

 Study of behaviour and characteristics of metal oxide material; 

 Study of theory, principles and interpretation of RVM; 

 Evaluation of metal oxide material using multilayer dielectric approach –    

Maxwell-Model; 

 Experimental works of ageing investigation on MOV using RVM 

method; and 

 Results validation by comparison with total leakage current and 1 mA 

reference voltage measurements. 

 
 
 
 
1.5 Thesis Outline 

 
 
This thesis is divided into five chapters.  Generally, some basic principles, 

theories, equations, previous researches’ references, experimental result and 

discussions are discussed included in these chapters based on the contents 

requirements of each chapter. 
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In chapter 1, the author has included the project overview and the main 

objectives of conducting this project.  Chapter 2 presents some background 

information of the project, such as the description of ZnO varistor as overvoltage 

protective device, and RVM as ZnO varistor diagnostic technique.  This chapter 

briefly explains the ZnO varistor structure, common equivalent circuit and electrical 

characteristics as well as the importance of conducting a research on its diagnostic 

technique.  At the end of the chapter, the author summarizes the current research 

works done by other researchers and of course their valuable recommendations.  

 
 

Chapter 3 presents the methodologies of modeling ZnO varistor as well as the 

experimental procedures of carrying out the RV measurements.  These are presented 

in a flow chart form together with a brief explanation.  The RVM interpretation 

methods are discussed at the end of this chapter.  Then, results and discussion are 

covered in Chapter 4.  

 
 

Finally, Chapter 5 summarizes all the works and studies that had been 

presented in the previous four chapters.  Besides, some future works are 

recommended at the end of the chapter. 




